竞赛 题目:基于机器视觉的图像矫正 (以车牌识别为例) - 图像畸变校正

news2025/1/12 6:16:58

文章目录

  • 0 简介
  • 1 思路简介
    • 1.1 车牌定位
    • 1.2 畸变校正
  • 2 代码实现
    • 2.1 车牌定位
      • 2.1.1 通过颜色特征选定可疑区域
      • 2.1.2 寻找车牌外围轮廓
      • 2.1.3 车牌区域定位
    • 2.2 畸变校正
      • 2.2.1 畸变后车牌顶点定位
      • 2.2.2 校正
  • 7 最后

0 简介

🔥 优质竞赛项目系列,今天要分享的是

基于机器视觉的图像矫正 (以车牌识别为例)

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 思路简介

目前车牌识别系统在各小区门口随处可见,识别效果貌似都还可以。查阅资料后,发现整个过程又可以细化为车牌定位、畸变校正、车牌分割和内容识别四部分。本篇随笔主要介绍车牌定位及畸变校正两部分,在python环境下通过opencv实现。

1.1 车牌定位

目前主流的车牌定位方法从大的方面来说可以分为两类:一种是基于车牌的背景颜色特征;另一种基于车牌的轮廓形状特征。基于颜色特征的又可分为两类:一种在RGB空间识别,另一种在HSV空间识别。经测试后发现,单独使用任何一种方法,效果均不太理想。目前比较普遍的做法是几种定位方法同时使用,或用一种识别,另一种验证。本文主要通过颜色特征对车牌进行定位,以HSV空间的H分量为主,以RGB空间的R分量和B分量为辅,后续再用车牌的长宽比例排除干扰。

1.2 畸变校正

在车牌的图像采集过程中,相机镜头通常都不是垂直于车牌的,所以待识别图像中车牌或多或少都会有一定程度的畸变,这给后续的车牌内容识别带来了一定的困难。因此需要对车牌进行畸变校正,消除畸变带来的不利影响。

2 代码实现

2.1 车牌定位

2.1.1 通过颜色特征选定可疑区域

取了不同光照环境下车牌的图像,截取其背景颜色,利用opencv进行通道分离和颜色空间转换,经试验后,总结出车牌背景色的以下特征:

  • (1)在HSV空间下,H分量的值通常都在115附近徘徊,S分量和V分量因光照不同而差异较大(opencv中H分量的取值范围是0到179,而不是图像学中的0到360;S分量和V分量的取值范围是到255);

  • (2)在RGB空间下,R分量通常较小,一般在30以下,B分量通常较大,一般在80以上,G分量波动较大;

  • (3)在HSV空间下对图像进行补光和加饱和度处理,即将图像的S分量和V分量均置为255,再进行色彩空间转换,由HSV空间转换为RGB空间,发现R分量全部变为0,B分量全部变为255(此操作会引入较大的干扰,后续没有使用)。

根据以上特征可初步筛选出可疑的车牌区域。随后对灰度图进行操作,将可疑位置的像素值置为255,其他位置的像素值置为0,即根据特征对图像进行了二值化。二值化图像中,可疑区域用白色表示,其他区域均为黑色。随后可通过膨胀腐蚀等操作对图像进一步处理。

for i in range(img_h):
    for j in range(img_w):
        # 普通蓝色车牌,同时排除透明反光物质的干扰
        if ((img_HSV[:, :, 0][i, j]-115)**2 < 15**2) and (img_B[i, j] > 70) and (img_R[i, j] < 40):
            img_gray[i, j] = 255
        else:
            img_gray[i, j] = 0

在这里插入图片描述

2.1.2 寻找车牌外围轮廓

选定可疑区域并将图像二值化后,一般情况下,图像中就只有车牌位置的像素颜色为白,但在一些特殊情况下还会存在一些噪声。如上图所示,由于图像右上角存在蓝色支架,与车牌颜色特征相符,因此也被当做车牌识别了出来,由此引入了噪声。

经过观察可以发现,车牌区域与噪声之间存在较大的差异,且车牌区域特征比较明显:

  • (1)根据我国常规车牌的形状可知,车牌的形状为扁平矩形,长宽比约为3:1;

  • (2)车牌区域面积远大于噪声区域,一般为图像中最大的白色区域。

在这里插入图片描述

可以通过cv2.findContours()函数寻找二值化后图像中白色区域的轮廓。

注意:在opencv2和opencv4中,cv2.findContours()的返回值有两个,而在opencv3中,返回值有3个。视opencv版本不同,代码的写法也会存在一定的差异。

# 检测所有外轮廓,只留矩形的四个顶点
# opencv4.0, opencv2.x
contours, _ = cv2.findContours(img_bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# opencv3.x
_, contours, _ = cv2.findContours(img_bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

这里,因为二值化图像中共有三块白色区域(车牌及两处噪声),因此返回值contours为长度为3的list。list内装有3个array,每个array内各存放着一块白色区域的轮廓信息。每个array的shape均为(n,
1, 2),即每个array存放着对应白色区域轮廓上n个点的坐标。

目前得到了3个array,即3组轮廓信息,但我们并不清楚其中哪个是车牌区域对应的那一组轮廓信息。此时可以根据车牌的上述特征筛选出车牌区域的轮廓。

#形状及大小筛选校验
det_x_max = 0
det_y_max = 0
num = 0
for i in range(len(contours)):
    x_min = np.min(contours[i][ :, :, 0])
    x_max = np.max(contours[i][ :, :, 0])
    y_min = np.min(contours[i][ :, :, 1])
    y_max = np.max(contours[i][ :, :, 1])
    det_x = x_max - x_min
    det_y = y_max - y_min
    if (det_x / det_y > 1.8) and (det_x > det_x_max ) and (det_y > det_y_max ):
        det_y_max = det_y
        det_x_max = det_x
        num = i
# 获取最可疑区域轮廓点集
points = np.array(contours[num][:, 0])

最终得到的points的shape为(n, 2),即存放了n个点的坐标,这n个点均分布在车牌的边缘上

2.1.3 车牌区域定位

获取车牌轮廓上的点集后,可用cv2.minAreaRect()获取点集的最小外接矩形。返回值rect内包含该矩形的中心点坐标、高度宽度及倾斜角度等信息,使用cv2.boxPoints()可获取该矩形的四个顶点坐标。

# 获取最小外接矩阵,中心点坐标,宽高,旋转角度
rect = cv2.minAreaRect(points)
# 获取矩形四个顶点,浮点型
box = cv2.boxPoints(rect)
# 取整
box = np.int0(box)

但我们并不清楚这四个坐标点各对应着矩形的哪一个顶点,因此无法充分地利用这些坐标信息。

可以从坐标值的大小特征入手,将四个坐标与矩形的四个顶点匹配起来:在opencv的坐标体系下,纵坐标最小的是top_point,纵坐标最大的是bottom_point,
横坐标最小的是left_point,横坐标最大的是right_point。

# 获取四个顶点坐标
left_point_x = np.min(box[:, 0])
right_point_x = np.max(box[:, 0])
top_point_y = np.min(box[:, 1])
bottom_point_y = np.max(box[:, 1])

left_point_y = box[:, 1][np.where(box[:, 0] == left_point_x)][0]
right_point_y = box[:, 1][np.where(box[:, 0] == right_point_x)][0]
top_point_x = box[:, 0][np.where(box[:, 1] == top_point_y)][0]
bottom_point_x = box[:, 0][np.where(box[:, 1] == bottom_point_y)][0]
# 上下左右四个点坐标
vertices = np.array([[top_point_x, top_point_y], [bottom_point_x, bottom_point_y], [left_point_x, left_point_y], [right_point_x, right_point_y]])

在这里插入图片描述
在这里插入图片描述

2.2 畸变校正

2.2.1 畸变后车牌顶点定位

要想实现车牌的畸变矫正,必须找到畸变前后对应点的位置关系。

可以看出,本是矩形的车牌畸变后变成了平行四边形,因此车牌轮廓和得出来的矩形轮廓并不契合。但有了矩形的四个顶点坐标后,可以通过简单的几何相似关系求出平行四边形车牌的四个顶点坐标。

在本例中,平行四边形四个顶点与矩形四个顶点之间有如下关系:矩形顶点Top_Point、Bottom_Point与平行四边形顶点new_top_point、new_bottom_point重合,矩形顶点Top_Point的横坐标与平行四边形顶点new_right_point的横坐标相同,矩形顶点Bottom_Point的横坐标与平行四边形顶点new_left_point的横坐标相同。

在这里插入图片描述

但事实上,由于拍摄的角度不同,可能出现两种不同的畸变情况。可以根据矩形倾斜角度的不同来判断具体是哪种畸变情况。

在这里插入图片描述

判断出具体的畸变情况后,选用对应的几何相似关系,即可轻易地求出平行四边形四个顶点坐标,即得到了畸变后车牌四个顶点的坐标。

要想实现车牌的校正,还需得到畸变前车牌四个顶点的坐标。因为我国车牌的标准尺寸为440X140,因此可规定畸变前车牌的四个顶点坐标分别为:(0,0),(440,0),(0,140),(440,140)。顺序上需与畸变后的四个顶点坐标相对应。

# 畸变情况1
if rect[2] > -45:
    new_right_point_x = vertices[0, 0]
    new_right_point_y = int(vertices[1, 1] - (vertices[0, 0]- vertices[1, 0]) / (vertices[3, 0] - vertices[1, 0]) * (vertices[1, 1] - vertices[3, 1]))
    new_left_point_x = vertices[1, 0]
    new_left_point_y = int(vertices[0, 1] + (vertices[0, 0] - vertices[1, 0]) / (vertices[0, 0] - vertices[2, 0]) * (vertices[2, 1] - vertices[0, 1]))
    # 校正后的四个顶点坐标
    point_set_1 = np.float32([[440, 0],[0, 0],[0, 140],[440, 140]])
# 畸变情况2
elif rect[2] < -45:
    new_right_point_x = vertices[1, 0]
    new_right_point_y = int(vertices[0, 1] + (vertices[1, 0] - vertices[0, 0]) / (vertices[3, 0] - vertices[0, 0]) * (vertices[3, 1] - vertices[0, 1]))
    new_left_point_x = vertices[0, 0]
    new_left_point_y = int(vertices[1, 1] - (vertices[1, 0] - vertices[0, 0]) / (vertices[1, 0] - vertices[2, 0]) * (vertices[1, 1] - vertices[2, 1]))
    # 校正后的四个顶点坐标
    point_set_1 = np.float32([[0, 0],[0, 140],[440, 140],[440, 0]])

# 校正前平行四边形四个顶点坐标
new_box = np.array([(vertices[0, 0], vertices[0, 1]), (new_left_point_x, new_left_point_y), (vertices[1, 0], vertices[1, 1]), (new_right_point_x, new_right_point_y)])
point_set_0 = np.float32(new_box)

2.2.2 校正

该畸变是由于摄像头与车牌不垂直而引起的投影造成的,因此可用cv2.warpPerspective()来进行校正。

# 变换矩阵
mat = cv2.getPerspectiveTransform(point_set_0, point_set_1)
# 投影变换
lic = cv2.warpPerspective(img, mat, (440, 140))

在这里插入图片描述


    import cv2
    import numpy as np
    
    # 预处理
    def imgProcess(path):
        img = cv2.imread(path)
        # 统一规定大小
        img = cv2.resize(img, (640,480))
        # 高斯模糊
        img_Gas = cv2.GaussianBlur(img,(5,5),0)
        # RGB通道分离
        img_B = cv2.split(img_Gas)[0]
        img_G = cv2.split(img_Gas)[1]
        img_R = cv2.split(img_Gas)[2]
        # 读取灰度图和HSV空间图
        img_gray = cv2.cvtColor(img_Gas, cv2.COLOR_BGR2GRAY)
        img_HSV = cv2.cvtColor(img_Gas, cv2.COLOR_BGR2HSV)
        return img, img_Gas, img_B, img_G, img_R, img_gray, img_HSV
    
    # 初步识别
    def preIdentification(img_gray, img_HSV, img_B, img_R):
        for i in range(480):
            for j in range(640):
                # 普通蓝色车牌,同时排除透明反光物质的干扰
                if ((img_HSV[:, :, 0][i, j]-115)**2 < 15**2) and (img_B[i, j] > 70) and (img_R[i, j] < 40):
                    img_gray[i, j] = 255
                else:
                    img_gray[i, j] = 0
        # 定义核
        kernel_small = np.ones((3, 3))
        kernel_big = np.ones((7, 7))
    
        img_gray = cv2.GaussianBlur(img_gray, (5, 5), 0) # 高斯平滑
        img_di = cv2.dilate(img_gray, kernel_small, iterations=5) # 腐蚀5次
        img_close = cv2.morphologyEx(img_di, cv2.MORPH_CLOSE, kernel_big) # 闭操作
        img_close = cv2.GaussianBlur(img_close, (5, 5), 0) # 高斯平滑
        _, img_bin = cv2.threshold(img_close, 100, 255, cv2.THRESH_BINARY) # 二值化
        return img_bin
    
    # 定位
    def fixPosition(img, img_bin):
        # 检测所有外轮廓,只留矩形的四个顶点
        contours, _ = cv2.findContours(img_bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
        #形状及大小筛选校验
        det_x_max = 0
        det_y_max = 0
        num = 0
        for i in range(len(contours)):
            x_min = np.min(contours[i][ :, :, 0])
            x_max = np.max(contours[i][ :, :, 0])
            y_min = np.min(contours[i][ :, :, 1])
            y_max = np.max(contours[i][ :, :, 1])
            det_x = x_max - x_min
            det_y = y_max - y_min
            if (det_x / det_y > 1.8) and (det_x > det_x_max ) and (det_y > det_y_max ):
                det_y_max = det_y
                det_x_max = det_x
                num = i
        # 获取最可疑区域轮廓点集
        points = np.array(contours[num][:, 0])
        return points

    #img_lic_canny = cv2.Canny(img_lic_bin, 100, 200)

    def findVertices(points):
        # 获取最小外接矩阵,中心点坐标,宽高,旋转角度
        rect = cv2.minAreaRect(points)
        # 获取矩形四个顶点,浮点型
        box = cv2.boxPoints(rect)
        # 取整
        box = np.int0(box)
        # 获取四个顶点坐标
        left_point_x = np.min(box[:, 0])
        right_point_x = np.max(box[:, 0])
        top_point_y = np.min(box[:, 1])
        bottom_point_y = np.max(box[:, 1])
    
        left_point_y = box[:, 1][np.where(box[:, 0] == left_point_x)][0]
        right_point_y = box[:, 1][np.where(box[:, 0] == right_point_x)][0]
        top_point_x = box[:, 0][np.where(box[:, 1] == top_point_y)][0]
        bottom_point_x = box[:, 0][np.where(box[:, 1] == bottom_point_y)][0]
        # 上下左右四个点坐标
        vertices = np.array([[top_point_x, top_point_y], [bottom_point_x, bottom_point_y], [left_point_x, left_point_y], [right_point_x, right_point_y]])
        return vertices, rect
    
    def tiltCorrection(vertices, rect):
        # 畸变情况1
        if rect[2] > -45:
            new_right_point_x = vertices[0, 0]
            new_right_point_y = int(vertices[1, 1] - (vertices[0, 0]- vertices[1, 0]) / (vertices[3, 0] - vertices[1, 0]) * (vertices[1, 1] - vertices[3, 1]))
            new_left_point_x = vertices[1, 0]
            new_left_point_y = int(vertices[0, 1] + (vertices[0, 0] - vertices[1, 0]) / (vertices[0, 0] - vertices[2, 0]) * (vertices[2, 1] - vertices[0, 1]))
            # 校正后的四个顶点坐标
            point_set_1 = np.float32([[440, 0],[0, 0],[0, 140],[440, 140]])
        # 畸变情况2
        elif rect[2] < -45:
            new_right_point_x = vertices[1, 0]
            new_right_point_y = int(vertices[0, 1] + (vertices[1, 0] - vertices[0, 0]) / (vertices[3, 0] - vertices[0, 0]) * (vertices[3, 1] - vertices[0, 1]))
            new_left_point_x = vertices[0, 0]
            new_left_point_y = int(vertices[1, 1] - (vertices[1, 0] - vertices[0, 0]) / (vertices[1, 0] - vertices[2, 0]) * (vertices[1, 1] - vertices[2, 1]))
            # 校正后的四个顶点坐标
            point_set_1 = np.float32([[0, 0],[0, 140],[440, 140],[440, 0]])
    
        # 校正前平行四边形四个顶点坐标
        new_box = np.array([(vertices[0, 0], vertices[0, 1]), (new_left_point_x, new_left_point_y), (vertices[1, 0], vertices[1, 1]), (new_right_point_x, new_right_point_y)])
        point_set_0 = np.float32(new_box)
        return point_set_0, point_set_1, new_box
    
    def transform(img, point_set_0, point_set_1):
        # 变换矩阵
        mat = cv2.getPerspectiveTransform(point_set_0, point_set_1)
        # 投影变换
        lic = cv2.warpPerspective(img, mat, (440, 140))
        return lic
    
    def main():
        path = 'F:\\Python\\license_plate\\test\\9.jpg'
        # 图像预处理
        img, img_Gas, img_B, img_G, img_R, img_gray, img_HSV = imgProcess(path)
        # 初步识别
        img_bin  = preIdentification(img_gray, img_HSV, img_B, img_R)
        points = fixPosition(img, img_bin)
        vertices, rect = findVertices(points)
        point_set_0, point_set_1, new_box = tiltCorrection(vertices, rect)
        img_draw = cv2.drawContours(img.copy(), [new_box], -1, (0,0,255), 3)
        lic = transform(img, point_set_0, point_set_1)
        # 原图上框出车牌
        cv2.namedWindow("Image")
        cv2.imshow("Image", img_draw)
        # 二值化图像
        cv2.namedWindow("Image_Bin")
        cv2.imshow("Image_Bin", img_bin)
        # 显示校正后的车牌
        cv2.namedWindow("Lic")
        cv2.imshow("Lic", lic)
        # 暂停、关闭窗口
        cv2.waitKey(0)
        cv2.destroyAllWindows()
    
    if __name__ == '__main__':
        main()



在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1220577.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《QT从基础到进阶·三十三》QT插件开发QtPlugin

插件和dll区别&#xff1a; 插件 插件主要面向接口编程&#xff0c;无需访问.lib文件&#xff0c;热插拔、利于团队开发。即使在程序运行时.dll不存在&#xff0c;也可以正常启动&#xff0c;只是相应插件功能无法正常使用而已&#xff1b; 调用插件中的方法只要dll即可&#x…

Hadoop学习总结(MapRdeuce的词频统计)

MapRdeuce编程示例——词频统计 一、MapRdeuce的词频统计的过程 二、编程过程 1、Mapper 组件 WordcountMapper.java package com.itcast.mrdemo;import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; …

# Python基础:输入输出详解-读写文件(还需完善)

open() 返回一个 file object &#xff0c;最常使用的是两个位置参数和一个关键字参数&#xff1a;open(filename, mode, encodingNone) f open(workfile, w, encoding"utf-8")第一个实参是文件名字符串。第二个实参是包含描述文件使用方式字符的字符串。mode 的值…

HTML5学习系列之项目实战1

HTML5学习系列之项目实战1 前言代码记录问题总结 前言 学习记录 代码 <div id"player"><audio id"musicbox"></audio><div id"controls" class"clearfix controls"><div id"play" class"…

Ajax 之XMLHttpRequest讲解

一直以来都听别人说Ajax,今天终于接触到了。。。。。。。。。。 一.什么是Ajax? 答: AJAX即“Asynchronous Javascript And XML”&#xff08;异步JavaScript和XML&#xff09;&#xff0c;是指一种创建交互式网页应用的网页开发技术。 AJAX 异步 JavaScript和XML&#x…

简单解决网页的验证码

翻到一个网站,展开需要验证码,而验证码需要关注微信公众号,懒得弄,所以有了这篇文章 首先,先看一下F12中的网络(Network),发现并没有使用网络动态验证 那么这个验证码必定是写在资源文件中的 在确定按钮上看到如下元素监听(Event Listeners) 进入打断点 成功断下 单步跟到…

代码随想录算法训练营第五十五天丨 动态规划part16

583. 两个字符串的删除操作 思路 #动态规划一 本题和动态规划&#xff1a;115.不同的子序列 (opens new window)相比&#xff0c;其实就是两个字符串都可以删除了&#xff0c;情况虽说复杂一些&#xff0c;但整体思路是不变的。 这次是两个字符串可以相互删了&#xff0c;这…

QTcpSocket发送结构体的做法

作者&#xff1a;朱金灿 来源&#xff1a;clever101的专栏 为什么大多数人学不会人工智能编程&#xff1f;>>> QTcpSocket发送结构体其实很简单:使用QByteArray类对象进行封装发送&#xff0c;示例代码如下&#xff1a; /* 消息结构体 */ struct stMsg {int m_A…

802.1Qbb

[TOC] 802.1Qbb 802.1Qbb是什么&#xff1f; 802.1Qbb&#xff08;基于优先级的流控制&#xff0c;PFC&#xff09;是以太网数据中心中一项重要的标准&#xff0c;用于提供无丢包的网络环境。这项标准是IEEE 802.1Q标准的一部分&#xff0c;旨在解决以太网数据中心网络中的拥…

《QT从基础到进阶·三十一》事件循环QCoreApplication,QGuiApplication,QApplication

QCoreApplication&#xff1a;为非界面类项目提供一个事件监听循环。 QGuiApplication&#xff1a;以QtGui模块基础开发的界面项目需要应用环境。 QApplication&#xff1a;以QWidget模块基础开发的界面项目需要应用环境。 可以简单总结为&#xff0c;如果是非界面项目开发&am…

Google codelab WebGPU入门教程源码<7> - 完整的元胞自动机之生命游戏的完整实现(源码)

对应的教程文章: https://codelabs.developers.google.com/your-first-webgpu-app?hlzh-cn#7 对应的源码执行效果: 对应的教程源码: 此处源码和教程本身提供的部分代码可能存在一点差异。 class Color4 {r: number;g: number;b: number;a: number;constructor(pr 1.0, …

剑指offer(C++)-JZ39:数组中出现次数超过一半的数字(算法-其他)

作者&#xff1a;翟天保Steven 版权声明&#xff1a;著作权归作者所有&#xff0c;商业转载请联系作者获得授权&#xff0c;非商业转载请注明出处 题目描述&#xff1a; 给一个长度为 n 的数组&#xff0c;数组中有一个数字出现的次数超过数组长度的一半&#xff0c;请找出这个…

分布式任务调度-XXL-job

源码仓库地址 http://gitee.com/xuxueli0323/xxl-job 前置环境 docker容器环境配置 拉取msyql镜像&#xff1a; docker pull mysql:5.7创建mysql容器: docker run -p 3306:3306 --name mysql57 \ -v /opt/mysql/conf:/etc/mysql \ -v /opt/mysql/logs:/var/log/mysql \ -v …

AR眼镜_单目光波导VS双目光波导方案

双目光波导AR眼镜方案是一种创新的智能设备&#xff0c;可以在现实场景中叠加虚拟信息&#xff0c;提供增强的视觉体验和交互体验。光学显示方案是AR眼镜的核心技术之一&#xff0c;它对眼镜的性能和使用体验起着决定性的作用。 相比于单目AR眼镜&#xff0c;双目AR眼镜具有更好…

opencv(5): 滤波器

滤波的作用&#xff1a;一幅图像通过滤波器得到另一幅图像&#xff1b;其中滤波器又称为卷积核&#xff0c;滤波的过程称为卷积。 锐化&#xff1a;边缘变清晰 低通滤波&#xff08;Low-pass Filtering&#xff09;&#xff1a; 目标&#xff1a;去除图像中的高频成分&#…

【Proteus仿真】【Arduino单片机】DS1302时钟

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真Arduino单片机控制器&#xff0c;使用PCF8574、LCD1602液晶、DS1302等。 主要功能&#xff1a; 系统运行后&#xff0c;LCD1602显示时间日期。 二、软件设计 /* 作者&#xff1a;…

SmartX 超融合 5.1 版本有哪些新特性和技术提升?

近日&#xff0c;SmartX 正式发布了超融合产品组合 SmartX HCI 5.1 版本&#xff0c;以全面升级的超融合软件、分布式块存储、容器管理与服务、软件定义的网络与安全等组件&#xff0c;为虚拟化和容器负载在计算、存储、网络和管理层面提供统一的架构和生产级别的能力支持。本期…

三菱FX3U小项目—运料小车自动化

目录 一、项目描述 二、IO口分配 三、项目流程图 四、项目程序 五、总结 一、项目描述 设备如下图所示&#xff0c;其中启动按钮SB1用来开启运料小车&#xff0c;停止按钮SB2用来手动停止运料小车(其工作方式任务模式要求)。当小车在原点SQ1位置&#xff0c;按下启动按钮S…

【深度学习实验】网络优化与正则化(七):超参数优化方法——网格搜索、随机搜索、贝叶斯优化、动态资源分配、神经架构搜索

文章目录 一、实验介绍二、实验环境1. 配置虚拟环境2. 库版本介绍 三、优化算法0. 导入必要的库1. 随机梯度下降SGD算法a. PyTorch中的SGD优化器b. 使用SGD优化器的前馈神经网络 2.随机梯度下降的改进方法a. 学习率调整b. 梯度估计修正 3. 梯度估计修正&#xff1a;动量法Momen…

什么是模糊测试?

背景&#xff1a;近年来&#xff0c;随着信息技术的发展&#xff0c;各种新型自动化测试技术如雨后春笋般出现。其中&#xff0c;模糊测试&#xff08;fuzz testing&#xff09;技术开始受到行业关注&#xff0c;它尤其适用于发现未知的、隐蔽性较强的底层缺陷。这里&#xff0…