DMA隐蔽通信的新思路
拆分DMA的RF链
思路的主要来源:
@article{Ci2021HybridBD,
title={Hybrid Beamforming Design for Covert Multicast mmWave Massive MIMO Communications},
author={Wei Ci and Chenhao Qi and Geoffrey Ye Li and Shiwen Mao},
journal={2021 IEEE Global Communications Conference (GLOBECOM)},
year={2021},
volume={},
pages={}
}
文章的仿真图,注意这篇文章是多用户的,纵轴是最小隐蔽速率, 横轴是最大干扰功率和PcMAX是?
Multiuser Covert Communication 多合法用户隐蔽通信?
思考: DMA可以用于远场吗?DMA用于远场的模型
下一步是首先看看多用户的隐蔽,然后看看能不能把这个文章复现出来.
r ( p i ) = a i H s + n i , i = b or w \begin{align} r\left(\mathbf{p}_{i}\right)=\mathbf{a}_{i}^{H} \mathbf{s}+n_{i}, \quad i=b \text { or } w \end{align} r(pi)=aiHs+ni,i=b or w
The digital input to the DMA is given by w = [ P c w b T x b , P J w w T x w ] T \mathbf{w}= \left[ \sqrt{P_c}\mathbf{w}_{b}^T x_{b} , \sqrt{P_J}\mathbf{w}_{w}^T x_{w} \right]^T w=[PcwbTxb,PJwwTxw]T , and thus by (1) the channel input is
s = H Q w \mathbf{s} = \mathbf{H Q} \mathbf{w} s=HQw
r ( p i ) = a i H H Q w + n i , i = b or w \begin{align} r\left(\mathbf{p}_{i}\right)=\mathbf{a}_{i}^{H} \mathbf{H Q} \mathbf{w} +n_{i}, \quad i=b \text { or } w \end{align} r(pi)=aiHHQw+ni,i=b or w
H
∈
C
N
d
N
e
×
N
d
N
e
\mathbf{H} \in \mathbb{C}^{N_d N_e \times N_d N_e}
H∈CNdNe×NdNe
H
b
∈
C
N
d
c
N
e
×
N
d
c
N
e
\mathbf{H}_b \in \mathbb{C}^{N_{dc} N_e \times N_{dc} N_e}
Hb∈CNdcNe×NdcNe
H
w
∈
C
N
d
j
N
e
×
N
d
j
N
e
\mathbf{H}_w \in \mathbb{C}^{N_{dj} N_e \times N_{dj} N_e}
Hw∈CNdjNe×NdjNe
Q
∈
C
N
d
N
e
×
N
d
\mathbf{Q} \in \mathbb{C}^{N_d N_e \times N_d }
Q∈CNdNe×Nd 不涉及发射功率分量
Q
b
∈
C
N
d
c
N
e
×
N
d
c
\mathbf{Q}_b \in \mathbb{C}^{N_{dc} N_e \times N_{dc} }
Qb∈CNdcNe×Ndc
Q
w
∈
C
N
d
j
N
e
×
N
d
j
\mathbf{Q}_w \in \mathbb{C}^{N_{dj} N_e \times N_{dj} }
Qw∈CNdjNe×Ndj
w
b
∈
C
N
d
×
1
\mathbf{w}_b \in \mathbb{C}^{N_d \times 1 }
wb∈CNd×1
∣
∣
w
b
∣
∣
2
2
=
1
||\mathbf{w}_b||^2_2 = 1
∣∣wb∣∣22=1
w
w
∈
C
N
d
×
1
\mathbf{w}_w \in \mathbb{C}^{N_d \times 1 }
ww∈CNd×1
∣
∣
w
w
∣
∣
2
2
=
1
||\mathbf{w}_w||^2_2 = 1
∣∣ww∣∣22=1
P
w
P_w
Pw is the power of the jamming signal
e
w
e_w
ew , which obeys the uniform distribution in
P
w
∼
[
0
,
P
w
m
a
x
]
P_w \sim \left[0, P_{wmax}\right]
Pw∼[0,Pwmax]
P
b
≤
P
b
m
a
x
P_{b} \leq P_{bmax}
Pb≤Pbmax
where
b
b
b and
w
w
w denote Bob and Willie, respectively,
n
i
∼
N
(
0
,
σ
i
2
)
n_{i} \sim \mathcal{N}\left(0, \sigma_{i}^{2}\right)
ni∼N(0,σi2) denote the noise at Bob or Willie.
有人工噪声
H 0 : r ( p w ) = P w a w H H Q w w e w + n w \mathcal{H}_{0}: r\left(\mathbf{p}_{w}\right) = \sqrt{P_w} \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} + n_{w} H0:r(pw)=PwawHHQwwew+nw
H 1 : r ( p w ) = P b a w H H Q w b e b + P w a w H H Q w w e w + n w \mathcal{H}_{1}: r\left(\mathbf{p}_{w}\right)=\sqrt{P_b} \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} + \sqrt{P_w} \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} + n_{w} H1:r(pw)=PbawHHQwbeb+PwawHHQwwew+nw
Willie有足够的时间来积累能量
H 0 : T 0 = ∣ r ( p w ) ∣ 2 = P w ∣ a w H H Q w w e w ∣ 2 + σ w 2 \mathcal{H}_{0}:T_0 = | r\left(\mathbf{p}_{w}\right) |^2 = P_w \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right|^2 + \sigma_{w}^2 H0:T0=∣r(pw)∣2=Pw awHHQwwew 2+σw2
H 1 : T 1 = ∣ r ( p w ) ∣ 2 = P b ∣ a w H H Q w b e b ∣ 2 + P w ∣ a w H H Q w w e w ∣ 2 + σ w 2 \mathcal{H}_{1}: T_1 = |r\left(\mathbf{p}_{w}\right)|^2 =P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 + P_w\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 + \sigma_{w}^2 H1:T1=∣r(pw)∣2=Pb awHHQwbeb 2+Pw awHHQwwew 2+σw2
无人工噪声
H 0 : r ( p w ) = n w \mathcal{H}_{0}:r\left(\mathbf{p}_{w}\right)=n_{w} H0:r(pw)=nw
H 1 : r ( p w ) = a i H H Q ( w b e b ) + n w \mathcal{H}_{1}: r\left(\mathbf{p}_{w}\right)=\mathbf{a}_{i}^{H} \mathbf{H Q} (\mathbf{w}_{b} e_{b} ) + n_{w} H1:r(pw)=aiHHQ(wbeb)+nw
Optimal detection threshold: τ \tau τ
Willie makes a binary decision on whether the received signal is noise or signal plus noise.
The test statistic is given by : T ( y w ) = ∣ r ( p w ) ∣ 2 T\left(\mathbf{y}_{w}\right) = |r\left(\mathbf{p}_{w}\right)|^2 T(yw)=∣r(pw)∣2
Denote D 0 D_0 D0 and D 1 D_1 D1 as the decisions that the received signal is noise and that the received signal is signal plus noise, respectively.
P
F
A
=
P
(
D
1
∣
H
0
)
=
P
r
(
T
0
≥
τ
)
P_{\mathrm{FA}}=\mathbb{P}\left(D_{1} \mid \mathcal{H}_{0}\right) = Pr(T_0 \ge \tau)
PFA=P(D1∣H0)=Pr(T0≥τ)
P
M
D
=
P
(
D
0
∣
H
1
)
=
P
r
(
T
1
<
τ
)
P_{\mathrm{MD}}=\mathbb{P}\left(D_{0} \mid \mathcal{H}_{1}\right) = Pr(T_1 < \tau)
PMD=P(D0∣H1)=Pr(T1<τ)
P F A = Pr ( T 0 ≥ τ ) = { 1 , τ < σ w 2 1 − τ − σ w 2 P w max ∣ a w H H Q w w e w ∣ 2 , σ w 2 ≤ τ < σ w 2 + P w max ∣ a w H H Q w w e w ∣ 2 0 , τ ≥ σ w 2 + P w max ∣ a w H H Q w w e w ∣ 2 \mathcal{P}_{\mathrm{FA}}=\operatorname{Pr}\left(T_{0} \geq \tau\right)=\left\{\begin{array}{ll} 1, & \tau<\sigma_{\mathrm{w}}^{2} \\ 1-\frac{\tau-\sigma_{\mathrm{w}}^{2}}{P_{\mathrm{w} \max } \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 }, & \sigma_{\mathrm{w}}^{2} \leq \tau<\sigma_{\mathrm{w}}^{2}+P_{\mathrm{w} \max } \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 \\ 0, & \tau \geq \sigma_{\mathrm{w}}^{2}+P_{\mathrm{w} \max } \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 \end{array}\right. PFA=Pr(T0≥τ)=⎩ ⎨ ⎧1,1−Pwmax∣awHHQwwew∣2τ−σw2,0,τ<σw2σw2≤τ<σw2+Pwmax awHHQwwew 2τ≥σw2+Pwmax awHHQwwew 2
P M D = Pr ( T 1 < τ ) = { 0 , τ < σ w 2 + P b ∣ a w H H Q w b e b ∣ 2 τ − σ w 2 − P b ∣ a w H H Q w b e b ∣ 2 P w max ∣ a w H H Q w w e w ∣ 2 , σ w 2 + P b ∣ a w H H Q w b e b ∣ 2 ≤ τ < σ w 2 + P b ∣ a w H H Q w b e b ∣ 2 + P w max ∣ a w H H Q w w e w ∣ 2 1 , τ ≥ σ w 2 + P b ∣ a w H H Q w b e b ∣ 2 + P w max ∣ a w H H Q w w e w ∣ 2 \mathcal{P}_{\mathrm{MD}}=\operatorname{Pr}\left(T_{1}<\tau\right)=\left\{\begin{array}{ll} 0, & \tau<\sigma_{\mathrm{w}}^{2}+P_{\mathrm{b}} \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 \\ \frac{\tau-\sigma_{\mathrm{w}}^{2}-P_{\mathrm{b}} \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 }{P_{\mathrm{w} \max } \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right|^2 }, & \sigma_{\mathrm{w}}^{2}+ P_{\mathrm{b}} \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right|^2 \leq \tau<\sigma_{\mathrm{w}}^{2} + P_{\mathrm{b}} \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right|^2 +P_{\mathrm{w} \max } \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right|^2 \\ 1, & \tau \geq \sigma_{\mathrm{w}}^{2} + P_{\mathrm{b}} \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right|^2 + P_{\mathrm{w} \max } \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right|^2 \end{array}\right. PMD=Pr(T1<τ)=⎩ ⎨ ⎧0,Pwmax∣awHHQwwew∣2τ−σw2−Pb∣awHHQwbeb∣2,1,τ<σw2+Pb awHHQwbeb 2σw2+Pb awHHQwbeb 2≤τ<σw2+Pb awHHQwbeb 2+Pwmax awHHQwwew 2τ≥σw2+Pb awHHQwbeb 2+Pwmax awHHQwwew 2
In the worst case, Willie has a perfect knowledge of the channel from Alice to Willie:
P e ≜ P F A + P M D \mathcal{P}_{\mathrm{e}} \triangleq \mathcal{P}_{\mathrm{FA}}+\mathcal{P}_{\mathrm{MD}} Pe≜PFA+PMD
if P e = 0 \mathcal{P}_{\mathrm{e}} = 0 Pe=0, due to the expression of P F A = 0 \mathcal{P}_{\mathrm{FA}} = 0 PFA=0 and P M D = 0 \mathcal{P}_{\mathrm{MD}} = 0 PMD=0 :
P w max ∣ a w H H Q w w e w ∣ 2 ≤ P b ∣ a w H H Q w b e b ∣ 2 P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 \le P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 Pwmax awHHQwwew 2≤Pb awHHQwbeb 2
So we can’t make P w max ∣ a w H H Q w w e w ∣ 2 ≤ P b ∣ a w H H Q w b e b ∣ 2 P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 \le P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 Pwmax awHHQwwew 2≤Pb awHHQwbeb 2 hold
To ensure P e ≠ 0 \mathcal{P}_{\mathrm{e}} \ne 0 Pe=0: We should make:
P w max ∣ a w H H Q w w e w ∣ 2 > P b ∣ a w H H Q w b e b ∣ 2 P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 > P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 Pwmax awHHQwwew 2>Pb awHHQwbeb 2
P e = { 1 − τ − σ w 2 P w max ∣ a w H H Q w w e w ∣ 2 , σ w 2 ≤ τ < σ w 2 + P b ∣ a w H H Q w b e b ∣ 2 1 − P b ∣ a w H H Q w b e b ∣ 2 P w max ∣ a w H H Q w w e w ∣ 2 , σ w 2 + P b ∣ a w H H Q w b e b ∣ 2 ≤ τ < σ w 2 + P w max ∣ a w H H Q w w e w ∣ 2 τ − σ w 2 − P b ∣ a w H H Q w b e b ∣ 2 P w max ∣ a w H H Q w w e w ∣ 2 , σ w 2 + P w max ∣ a w H H Q w w e w ∣ 2 ≤ τ < σ w 2 + P b ∣ a w H H Q w b e b ∣ 2 + P w max ∣ a w H H Q w w e w ∣ 2 1 , else (21) \mathcal{P}_{\mathrm{e}}=\left\{\begin{array}{ll} 1-\frac{\tau-\sigma_{\mathrm{w}}^{2}} { P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 }, & \sigma_{\mathrm{w}}^{2} \leq \tau<\sigma_{\mathrm{w}}^{2}+P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 \\ 1-\frac{ P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 }{ P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 }, & \sigma_{\mathrm{w}}^{2}+ P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 \leq \tau<\sigma_{\mathrm{w}}^{2}+P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2\\ \frac{\tau-\sigma_{\mathrm{w}}^{2}-P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2}{ P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 }, & \sigma_{\mathrm{w}}^{2}+ P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 \leq \tau<\sigma_{\mathrm{w}}^{2}+P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2+ P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 \\ 1, & \text { else } \end{array}\right. \tag{21} Pe=⎩ ⎨ ⎧1−Pwmax∣awHHQwwew∣2τ−σw2,1−Pwmax∣awHHQwwew∣2Pb∣awHHQwbeb∣2,Pwmax∣awHHQwwew∣2τ−σw2−Pb∣awHHQwbeb∣2,1,σw2≤τ<σw2+Pb awHHQwbeb 2σw2+Pb awHHQwbeb 2≤τ<σw2+Pwmax awHHQwwew 2σw2+Pwmax awHHQwwew 2≤τ<σw2+Pb awHHQwbeb 2+Pwmax awHHQwwew 2 else (21)
对 P e \mathcal{P}_{\mathrm{e}} Pe求导,然后可以发现:
Optimal τ \tau τ achieved by (21b)
P ^ e = 1 − P b ∣ a w H H Q w b e b ∣ 2 P w max ∣ a w H H Q w w e w ∣ 2 , \widehat{\mathcal{P}}_{\mathrm{e}}=1 - \frac{ P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 }{ P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 }, P e=1−Pwmax∣awHHQwwew∣2Pb awHHQwbeb 2,
SINR at Bob
γ
b
≜
P
b
∣
a
b
H
H
Q
w
b
e
b
∣
2
P
w
∣
a
b
H
H
Q
w
w
e
w
∣
2
+
σ
b
2
(23)
\gamma_{b} \triangleq \frac{ P_b\left| \mathbf{a}_{b}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 }{ P_w\left| \mathbf{a}_{b}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 + \sigma_{b}^{2} } \tag{23}
γb≜Pw
abHHQwwew
2+σb2Pb
abHHQwbeb
2(23)
We need to maximize γ b \gamma_{b} γb
The covert rate :
R b = log 2 ( 1 + γ b ) R_{b}=\log _{2}\left(1+\gamma_{b}\right) Rb=log2(1+γb)
maximize the covert rate:
Optimization problem about
w
w
\mathbf{w}_w
ww,
w
b
\mathbf{w}_b
wb,
Q
\mathbf{Q}
Q,
P
b
P_b
Pb
max w w , w b , Q , P b R b , s.t. P ^ e ≥ 1 − ϵ , P b ≤ P b m a x , ∣ ∣ w b ∣ ∣ 2 2 = 1 , ∣ ∣ w w ∣ ∣ 2 2 = 1 , Q 的约束 (24) \begin{aligned} \max _{ \mathbf{w}_w,\mathbf{w}_b,\mathbf{Q}, P_b} & R_{b}, \\ \text { s.t. } & \widehat{\mathcal{P}}_{\mathrm{e}} \geq 1-\epsilon, \\ & P_{b} \leq P_{bmax},\\ &||\mathbf{w}_b||^2_2 = 1,\\ &||\mathbf{w}_w||^2_2 = 1,\\ &\mathbf{Q}的约束 \end{aligned} \tag{24} ww,wb,Q,Pbmax s.t. Rb,P e≥1−ϵ,Pb≤Pbmax,∣∣wb∣∣22=1,∣∣ww∣∣22=1,Q的约束(24)
(Constraint 1 is equal to)
P b ≤ g ( w b , w w , Q ) (25) P_{\mathrm{b}} \leq g\left( \mathbf{w}_{\mathrm{b}}, \mathbf{w}_{\mathrm{w}}, \mathbf{Q} \right) \tag{25} Pb≤g(wb,ww,Q)(25)
g ( w b , w w , Q ) g\left( \mathbf{w}_{\mathrm{b}}, \mathbf{w}_{\mathrm{w}}, \mathbf{Q} \right) g(wb,ww,Q) is expressed as:
g ( w b , w w , Q ) ≜ ϵ P w max ∣ a w H H Q w w e w ∣ 2 ∣ a w H H Q w b e b ∣ 2 (26) g\left( \mathbf{w}_{\mathrm{b}}, \mathbf{w}_{\mathrm{w}}, \mathbf{Q} \right) \triangleq \frac{\epsilon P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 }{ \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 } \tag{26} g(wb,ww,Q)≜∣awHHQwbeb∣2ϵPwmax awHHQwwew 2(26)
Note that (23) monotonically increases with P b P_b Pb.
The optimal P b P_b Pb:
P ~ b = min { P b m a x , g ( w b , w w , Q ) } . (27) \widetilde{P}_{\mathrm{b}}=\min \left\{P_{\mathrm{bmax}}, g\left( \mathbf{w}_{\mathrm{b}}, \mathbf{w}_{\mathrm{w}}, \mathbf{Q} \right) \right\} . \tag{27} P b=min{Pbmax,g(wb,ww,Q)}.(27)
(25) (26) (27) 联合表述了第一个约束和第二个约束
针对 P b P_b Pb问题的优化:
max w b , w w , Q g ( w b , w w , Q ) . (28) \max _{\mathbf{w}_{\mathrm{b}}, \mathbf{w}_{\mathrm{w}}, \mathbf{Q}} g\left( \mathbf{w}_{\mathrm{b}}, \mathbf{w}_{\mathrm{w}}, \mathbf{Q} \right) . \tag{28} wb,ww,Qmaxg(wb,ww,Q).(28)
主目标函数,最大化Bob处的信噪比
Due to (23), we need to maximize ∣ a b H H Q w b e b ∣ 2 \left| \mathbf{a}_{b}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 abHHQwbeb 2 and minimize ∣ a b H H Q w w e w ∣ 2 \left| \mathbf{a}_{b}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 abHHQwwew 2
Hopefully there are feasible solutions for
a b H H Q w w e w = 0 (29) \mathbf{a}_{b}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} = 0 \tag{29} abHHQwwew=0(29)
Then the optimization of w w \mathbf{w}_w ww and w b \mathbf{w}_b wb is decoupled. (24) is converted into the following two independent optimization problems as
max w w ∣ a w H H Q w w e w ∣ 2 s.t. ∥ w w ∥ 2 2 = 1 , a b H H Q w w e w = 0 , (30) \begin{aligned} \max _{\mathbf{w}_{\mathrm{w}}} & \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 \\ \text { s.t. } & \left\|\mathbf{w}_{\mathrm{w}}\right\|_{2}^{2}=1,\\ & \mathbf{a}_{b}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} = 0, \end{aligned} \tag{30} wwmax s.t. awHHQwwew 2∥ww∥22=1,abHHQwwew=0,(30)
max w b ∣ a b H H Q w b e b ∣ 2 σ b 2 s.t. ∣ a w H H Q w b e b ∣ 2 = 0 , ∥ w b ∥ 2 2 = 1 (31) \begin{aligned} \max _{\boldsymbol{w}_{\mathrm{b}}} & \frac{ \left| \mathbf{a}_{b}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 }{\sigma_{b}^{2}} \\ \text { s.t. } & \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 = 0, \\ & \left\|\mathbf{w}_{\mathrm{b}}\right\|_{2}^{2}=1 \end{aligned} \tag{31} wbmax s.t. σb2 abHHQwbeb 2 awHHQwbeb 2=0,∥wb∥22=1(31)
where (30a) and (31b) are based on (28) and the transformation from (24a) to (31a) is based on (29).