DMA covert communication

news2024/11/24 2:31:10

DMA隐蔽通信的新思路

拆分DMA的RF链

思路的主要来源:
@article{Ci2021HybridBD,
title={Hybrid Beamforming Design for Covert Multicast mmWave Massive MIMO Communications},
author={Wei Ci and Chenhao Qi and Geoffrey Ye Li and Shiwen Mao},
journal={2021 IEEE Global Communications Conference (GLOBECOM)},
year={2021},
volume={},
pages={}
}

在这里插入图片描述
在这里插入图片描述
文章的仿真图,注意这篇文章是多用户的,纵轴是最小隐蔽速率, 横轴是最大干扰功率和PcMAX是?
Multiuser Covert Communication 多合法用户隐蔽通信?
思考: DMA可以用于远场吗?DMA用于远场的模型

下一步是首先看看多用户的隐蔽,然后看看能不能把这个文章复现出来.

r ( p i ) = a i H s + n i , i = b  or  w \begin{align} r\left(\mathbf{p}_{i}\right)=\mathbf{a}_{i}^{H} \mathbf{s}+n_{i}, \quad i=b \text { or } w \end{align} r(pi)=aiHs+ni,i=b or w

The digital input to the DMA is given by w = [ P c w b T x b , P J w w T x w ] T \mathbf{w}= \left[ \sqrt{P_c}\mathbf{w}_{b}^T x_{b} , \sqrt{P_J}\mathbf{w}_{w}^T x_{w} \right]^T w=[Pc wbTxb,PJ wwTxw]T , and thus by (1) the channel input is

s = H Q w \mathbf{s} = \mathbf{H Q} \mathbf{w} s=HQw

r ( p i ) = a i H H Q w + n i , i = b  or  w \begin{align} r\left(\mathbf{p}_{i}\right)=\mathbf{a}_{i}^{H} \mathbf{H Q} \mathbf{w} +n_{i}, \quad i=b \text { or } w \end{align} r(pi)=aiHHQw+ni,i=b or w

H ∈ C N d N e × N d N e \mathbf{H} \in \mathbb{C}^{N_d N_e \times N_d N_e} HCNdNe×NdNe
H b ∈ C N d c N e × N d c N e \mathbf{H}_b \in \mathbb{C}^{N_{dc} N_e \times N_{dc} N_e} HbCNdcNe×NdcNe
H w ∈ C N d j N e × N d j N e \mathbf{H}_w \in \mathbb{C}^{N_{dj} N_e \times N_{dj} N_e} HwCNdjNe×NdjNe

Q ∈ C N d N e × N d \mathbf{Q} \in \mathbb{C}^{N_d N_e \times N_d } QCNdNe×Nd 不涉及发射功率分量
Q b ∈ C N d c N e × N d c \mathbf{Q}_b \in \mathbb{C}^{N_{dc} N_e \times N_{dc} } QbCNdcNe×Ndc
Q w ∈ C N d j N e × N d j \mathbf{Q}_w \in \mathbb{C}^{N_{dj} N_e \times N_{dj} } QwCNdjNe×Ndj

w b ∈ C N d × 1 \mathbf{w}_b \in \mathbb{C}^{N_d \times 1 } wbCNd×1
∣ ∣ w b ∣ ∣ 2 2 = 1 ||\mathbf{w}_b||^2_2 = 1 ∣∣wb22=1
w w ∈ C N d × 1 \mathbf{w}_w \in \mathbb{C}^{N_d \times 1 } wwCNd×1
∣ ∣ w w ∣ ∣ 2 2 = 1 ||\mathbf{w}_w||^2_2 = 1 ∣∣ww22=1

P w P_w Pw is the power of the jamming signal e w e_w ew , which obeys the uniform distribution in
P w ∼ [ 0 , P w m a x ] P_w \sim \left[0, P_{wmax}\right] Pw[0,Pwmax]

P b ≤ P b m a x P_{b} \leq P_{bmax} PbPbmax
where b b b and w w w denote Bob and Willie, respectively, n i ∼ N ( 0 , σ i 2 ) n_{i} \sim \mathcal{N}\left(0, \sigma_{i}^{2}\right) niN(0,σi2) denote the noise at Bob or Willie.

有人工噪声

H 0 : r ( p w ) = P w a w H H Q w w e w + n w \mathcal{H}_{0}: r\left(\mathbf{p}_{w}\right) = \sqrt{P_w} \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} + n_{w} H0:r(pw)=Pw awHHQwwew+nw

H 1 : r ( p w ) = P b a w H H Q w b e b + P w a w H H Q w w e w + n w \mathcal{H}_{1}: r\left(\mathbf{p}_{w}\right)=\sqrt{P_b} \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} + \sqrt{P_w} \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} + n_{w} H1:r(pw)=Pb awHHQwbeb+Pw awHHQwwew+nw

Willie有足够的时间来积累能量

H 0 : T 0 = ∣ r ( p w ) ∣ 2 = P w ∣ a w H H Q w w e w ∣ 2 + σ w 2 \mathcal{H}_{0}:T_0 = | r\left(\mathbf{p}_{w}\right) |^2 = P_w \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right|^2 + \sigma_{w}^2 H0:T0=r(pw)2=Pw awHHQwwew 2+σw2

H 1 : T 1 = ∣ r ( p w ) ∣ 2 = P b ∣ a w H H Q w b e b ∣ 2 + P w ∣ a w H H Q w w e w ∣ 2 + σ w 2 \mathcal{H}_{1}: T_1 = |r\left(\mathbf{p}_{w}\right)|^2 =P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 + P_w\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 + \sigma_{w}^2 H1:T1=r(pw)2=Pb awHHQwbeb 2+Pw awHHQwwew 2+σw2

无人工噪声

H 0 : r ( p w ) = n w \mathcal{H}_{0}:r\left(\mathbf{p}_{w}\right)=n_{w} H0:r(pw)=nw

H 1 : r ( p w ) = a i H H Q ( w b e b ) + n w \mathcal{H}_{1}: r\left(\mathbf{p}_{w}\right)=\mathbf{a}_{i}^{H} \mathbf{H Q} (\mathbf{w}_{b} e_{b} ) + n_{w} H1:r(pw)=aiHHQ(wbeb)+nw

Optimal detection threshold: τ \tau τ

Willie makes a binary decision on whether the received signal is noise or signal plus noise.

The test statistic is given by : T ( y w ) = ∣ r ( p w ) ∣ 2 T\left(\mathbf{y}_{w}\right) = |r\left(\mathbf{p}_{w}\right)|^2 T(yw)=r(pw)2

Denote D 0 D_0 D0 and D 1 D_1 D1 as the decisions that the received signal is noise and that the received signal is signal plus noise, respectively.

P F A = P ( D 1 ∣ H 0 ) = P r ( T 0 ≥ τ ) P_{\mathrm{FA}}=\mathbb{P}\left(D_{1} \mid \mathcal{H}_{0}\right) = Pr(T_0 \ge \tau) PFA=P(D1H0)=Pr(T0τ)
P M D = P ( D 0 ∣ H 1 ) = P r ( T 1 < τ ) P_{\mathrm{MD}}=\mathbb{P}\left(D_{0} \mid \mathcal{H}_{1}\right) = Pr(T_1 < \tau) PMD=P(D0H1)=Pr(T1<τ)

P F A = Pr ⁡ ( T 0 ≥ τ ) = { 1 , τ < σ w 2 1 − τ − σ w 2 P w max ⁡ ∣ a w H H Q w w e w ∣ 2 , σ w 2 ≤ τ < σ w 2 + P w max ⁡ ∣ a w H H Q w w e w ∣ 2 0 , τ ≥ σ w 2 + P w max ⁡ ∣ a w H H Q w w e w ∣ 2 \mathcal{P}_{\mathrm{FA}}=\operatorname{Pr}\left(T_{0} \geq \tau\right)=\left\{\begin{array}{ll} 1, & \tau<\sigma_{\mathrm{w}}^{2} \\ 1-\frac{\tau-\sigma_{\mathrm{w}}^{2}}{P_{\mathrm{w} \max } \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 }, & \sigma_{\mathrm{w}}^{2} \leq \tau<\sigma_{\mathrm{w}}^{2}+P_{\mathrm{w} \max } \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 \\ 0, & \tau \geq \sigma_{\mathrm{w}}^{2}+P_{\mathrm{w} \max } \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 \end{array}\right. PFA=Pr(T0τ)= 1,1PwmaxawHHQwwew2τσw2,0,τ<σw2σw2τ<σw2+Pwmax awHHQwwew 2τσw2+Pwmax awHHQwwew 2

P M D = Pr ⁡ ( T 1 < τ ) = { 0 , τ < σ w 2 + P b ∣ a w H H Q w b e b ∣ 2 τ − σ w 2 − P b ∣ a w H H Q w b e b ∣ 2 P w max ⁡ ∣ a w H H Q w w e w ∣ 2 , σ w 2 + P b ∣ a w H H Q w b e b ∣ 2 ≤ τ < σ w 2 + P b ∣ a w H H Q w b e b ∣ 2 + P w max ⁡ ∣ a w H H Q w w e w ∣ 2 1 , τ ≥ σ w 2 + P b ∣ a w H H Q w b e b ∣ 2 + P w max ⁡ ∣ a w H H Q w w e w ∣ 2 \mathcal{P}_{\mathrm{MD}}=\operatorname{Pr}\left(T_{1}<\tau\right)=\left\{\begin{array}{ll} 0, & \tau<\sigma_{\mathrm{w}}^{2}+P_{\mathrm{b}} \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 \\ \frac{\tau-\sigma_{\mathrm{w}}^{2}-P_{\mathrm{b}} \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 }{P_{\mathrm{w} \max } \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right|^2 }, & \sigma_{\mathrm{w}}^{2}+ P_{\mathrm{b}} \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right|^2 \leq \tau<\sigma_{\mathrm{w}}^{2} + P_{\mathrm{b}} \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right|^2 +P_{\mathrm{w} \max } \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right|^2 \\ 1, & \tau \geq \sigma_{\mathrm{w}}^{2} + P_{\mathrm{b}} \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right|^2 + P_{\mathrm{w} \max } \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right|^2 \end{array}\right. PMD=Pr(T1<τ)= 0,PwmaxawHHQwwew2τσw2PbawHHQwbeb2,1,τ<σw2+Pb awHHQwbeb 2σw2+Pb awHHQwbeb 2τ<σw2+Pb awHHQwbeb 2+Pwmax awHHQwwew 2τσw2+Pb awHHQwbeb 2+Pwmax awHHQwwew 2

In the worst case, Willie has a perfect knowledge of the channel from Alice to Willie:

P e ≜ P F A + P M D \mathcal{P}_{\mathrm{e}} \triangleq \mathcal{P}_{\mathrm{FA}}+\mathcal{P}_{\mathrm{MD}} PePFA+PMD

if P e = 0 \mathcal{P}_{\mathrm{e}} = 0 Pe=0, due to the expression of P F A = 0 \mathcal{P}_{\mathrm{FA}} = 0 PFA=0 and P M D = 0 \mathcal{P}_{\mathrm{MD}} = 0 PMD=0 :

P w max ⁡ ∣ a w H H Q w w e w ∣ 2 ≤ P b ∣ a w H H Q w b e b ∣ 2 P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 \le P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 Pwmax awHHQwwew 2Pb awHHQwbeb 2

So we can’t make P w max ⁡ ∣ a w H H Q w w e w ∣ 2 ≤ P b ∣ a w H H Q w b e b ∣ 2 P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 \le P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 Pwmax awHHQwwew 2Pb awHHQwbeb 2 hold

To ensure P e ≠ 0 \mathcal{P}_{\mathrm{e}} \ne 0 Pe=0: We should make:

P w max ⁡ ∣ a w H H Q w w e w ∣ 2 > P b ∣ a w H H Q w b e b ∣ 2 P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 > P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 Pwmax awHHQwwew 2>Pb awHHQwbeb 2

P e = { 1 − τ − σ w 2 P w max ⁡ ∣ a w H H Q w w e w ∣ 2 , σ w 2 ≤ τ < σ w 2 + P b ∣ a w H H Q w b e b ∣ 2 1 − P b ∣ a w H H Q w b e b ∣ 2 P w max ⁡ ∣ a w H H Q w w e w ∣ 2 , σ w 2 + P b ∣ a w H H Q w b e b ∣ 2 ≤ τ < σ w 2 + P w max ⁡ ∣ a w H H Q w w e w ∣ 2 τ − σ w 2 − P b ∣ a w H H Q w b e b ∣ 2 P w max ⁡ ∣ a w H H Q w w e w ∣ 2 , σ w 2 + P w max ⁡ ∣ a w H H Q w w e w ∣ 2 ≤ τ < σ w 2 + P b ∣ a w H H Q w b e b ∣ 2 + P w max ⁡ ∣ a w H H Q w w e w ∣ 2 1 ,  else  (21) \mathcal{P}_{\mathrm{e}}=\left\{\begin{array}{ll} 1-\frac{\tau-\sigma_{\mathrm{w}}^{2}} { P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 }, & \sigma_{\mathrm{w}}^{2} \leq \tau<\sigma_{\mathrm{w}}^{2}+P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 \\ 1-\frac{ P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 }{ P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 }, & \sigma_{\mathrm{w}}^{2}+ P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 \leq \tau<\sigma_{\mathrm{w}}^{2}+P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2\\ \frac{\tau-\sigma_{\mathrm{w}}^{2}-P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2}{ P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 }, & \sigma_{\mathrm{w}}^{2}+ P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 \leq \tau<\sigma_{\mathrm{w}}^{2}+P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2+ P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 \\ 1, & \text { else } \end{array}\right. \tag{21} Pe= 1PwmaxawHHQwwew2τσw2,1PwmaxawHHQwwew2PbawHHQwbeb2,PwmaxawHHQwwew2τσw2PbawHHQwbeb2,1,σw2τ<σw2+Pb awHHQwbeb 2σw2+Pb awHHQwbeb 2τ<σw2+Pwmax awHHQwwew 2σw2+Pwmax awHHQwwew 2τ<σw2+Pb awHHQwbeb 2+Pwmax awHHQwwew 2 else (21)

P e \mathcal{P}_{\mathrm{e}} Pe求导,然后可以发现:

Optimal τ \tau τ achieved by (21b)

P ^ e = 1 − P b ∣ a w H H Q w b e b ∣ 2 P w max ⁡ ∣ a w H H Q w w e w ∣ 2 , \widehat{\mathcal{P}}_{\mathrm{e}}=1 - \frac{ P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 }{ P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 }, P e=1PwmaxawHHQwwew2Pb awHHQwbeb 2,

SINR at Bob
γ b ≜ P b ∣ a b H H Q w b e b ∣ 2 P w ∣ a b H H Q w w e w ∣ 2 + σ b 2 (23) \gamma_{b} \triangleq \frac{ P_b\left| \mathbf{a}_{b}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 }{ P_w\left| \mathbf{a}_{b}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 + \sigma_{b}^{2} } \tag{23} γbPw abHHQwwew 2+σb2Pb abHHQwbeb 2(23)

We need to maximize γ b \gamma_{b} γb

The covert rate :

R b = log ⁡ 2 ( 1 + γ b ) R_{b}=\log _{2}\left(1+\gamma_{b}\right) Rb=log2(1+γb)

maximize the covert rate:
Optimization problem about w w \mathbf{w}_w ww, w b \mathbf{w}_b wb, Q \mathbf{Q} Q, P b P_b Pb

max ⁡ w w , w b , Q , P b R b ,  s.t.  P ^ e ≥ 1 − ϵ , P b ≤ P b m a x , ∣ ∣ w b ∣ ∣ 2 2 = 1 , ∣ ∣ w w ∣ ∣ 2 2 = 1 , Q 的约束 (24) \begin{aligned} \max _{ \mathbf{w}_w,\mathbf{w}_b,\mathbf{Q}, P_b} & R_{b}, \\ \text { s.t. } & \widehat{\mathcal{P}}_{\mathrm{e}} \geq 1-\epsilon, \\ & P_{b} \leq P_{bmax},\\ &||\mathbf{w}_b||^2_2 = 1,\\ &||\mathbf{w}_w||^2_2 = 1,\\ &\mathbf{Q}的约束 \end{aligned} \tag{24} ww,wb,Q,Pbmax s.t. Rb,P e1ϵ,PbPbmax,∣∣wb22=1,∣∣ww22=1,Q的约束(24)


(Constraint 1 is equal to)

P b ≤ g ( w b , w w , Q ) (25) P_{\mathrm{b}} \leq g\left( \mathbf{w}_{\mathrm{b}}, \mathbf{w}_{\mathrm{w}}, \mathbf{Q} \right) \tag{25} Pbg(wb,ww,Q)(25)

g ( w b , w w , Q ) g\left( \mathbf{w}_{\mathrm{b}}, \mathbf{w}_{\mathrm{w}}, \mathbf{Q} \right) g(wb,ww,Q) is expressed as:

g ( w b , w w , Q ) ≜ ϵ P w max ⁡ ∣ a w H H Q w w e w ∣ 2 ∣ a w H H Q w b e b ∣ 2 (26) g\left( \mathbf{w}_{\mathrm{b}}, \mathbf{w}_{\mathrm{w}}, \mathbf{Q} \right) \triangleq \frac{\epsilon P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 }{ \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 } \tag{26} g(wb,ww,Q)awHHQwbeb2ϵPwmax awHHQwwew 2(26)

Note that (23) monotonically increases with P b P_b Pb.

The optimal P b P_b Pb:

P ~ b = min ⁡ { P b m a x , g ( w b , w w , Q ) } . (27) \widetilde{P}_{\mathrm{b}}=\min \left\{P_{\mathrm{bmax}}, g\left( \mathbf{w}_{\mathrm{b}}, \mathbf{w}_{\mathrm{w}}, \mathbf{Q} \right) \right\} . \tag{27} P b=min{Pbmax,g(wb,ww,Q)}.(27)


(25) (26) (27) 联合表述了第一个约束和第二个约束


针对 P b P_b Pb问题的优化:


max ⁡ w b , w w , Q g ( w b , w w , Q ) . (28) \max _{\mathbf{w}_{\mathrm{b}}, \mathbf{w}_{\mathrm{w}}, \mathbf{Q}} g\left( \mathbf{w}_{\mathrm{b}}, \mathbf{w}_{\mathrm{w}}, \mathbf{Q} \right) . \tag{28} wb,ww,Qmaxg(wb,ww,Q).(28)


主目标函数,最大化Bob处的信噪比


Due to (23), we need to maximize ∣ a b H H Q w b e b ∣ 2 \left| \mathbf{a}_{b}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 abHHQwbeb 2 and minimize ∣ a b H H Q w w e w ∣ 2 \left| \mathbf{a}_{b}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 abHHQwwew 2

Hopefully there are feasible solutions for

a b H H Q w w e w = 0 (29) \mathbf{a}_{b}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} = 0 \tag{29} abHHQwwew=0(29)


Then the optimization of w w \mathbf{w}_w ww and w b \mathbf{w}_b wb is decoupled. (24) is converted into the following two independent optimization problems as

max ⁡ w w ∣ a w H H Q w w e w ∣ 2  s.t.  ∥ w w ∥ 2 2 = 1 , a b H H Q w w e w = 0 , (30) \begin{aligned} \max _{\mathbf{w}_{\mathrm{w}}} & \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 \\ \text { s.t. } & \left\|\mathbf{w}_{\mathrm{w}}\right\|_{2}^{2}=1,\\ & \mathbf{a}_{b}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} = 0, \end{aligned} \tag{30} wwmax s.t.  awHHQwwew 2ww22=1,abHHQwwew=0,(30)

max ⁡ w b ∣ a b H H Q w b e b ∣ 2 σ b 2  s.t.  ∣ a w H H Q w b e b ∣ 2 = 0 , ∥ w b ∥ 2 2 = 1 (31) \begin{aligned} \max _{\boldsymbol{w}_{\mathrm{b}}} & \frac{ \left| \mathbf{a}_{b}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 }{\sigma_{b}^{2}} \\ \text { s.t. } & \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 = 0, \\ & \left\|\mathbf{w}_{\mathrm{b}}\right\|_{2}^{2}=1 \end{aligned} \tag{31} wbmax s.t. σb2 abHHQwbeb 2 awHHQwbeb 2=0,wb22=1(31)

where (30a) and (31b) are based on (28) and the transformation from (24a) to (31a) is based on (29).


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1220268.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

项目技术复盘

背景 该项目接手时已是8月中下旬&#xff0c;并且客户要求九月中旬输出第一版本。这么紧急的节奏&#xff0c;不知道商务是如何答应的。临危受命&#xff0c;让我承担开发经理岗位&#xff0c;主导该项目。 开发团队 岗位 人员 base 架构师兼高级软件工程师 季工 上海 高…

Isight 2023 新功能介绍

​​Isight是一个仿真分析流程自动化和多学科多目标优化工具&#xff0c;它提供了一个可视化的灵活的仿真流程搭建平台&#xff0c;同时提供与多种主流CAE分析工具的专用接口&#xff0c;利用此工具&#xff0c;用户可以方便的以拖拽的方式可视化的快速建立复杂的仿真分析流程&…

榜首揭秘:热门产品原型设计工具TOP10

在现代产品制作和创新过程中&#xff0c;原型设计工具起着不可或缺的作用。这些工具为设计师、开发人员和团队提供了更深入的理解&#xff0c;以便核实和呈现他们的设计想法。根据项目的特性&#xff0c;可能需要使用各种类型的工具&#xff0c;因此&#xff0c;我们将在此篇文…

最新随机小姐姐无水印开源版HTML源码

推荐一款高质量的HTML引流源码&#xff0c;适合浏览小姐姐短视频 这款源码具有出色的用户界面设计&#xff0c;给人视觉上的美感 视频播放流畅稳定&#xff0c;给用户带来良好的观影体验 小姐姐们的外貌也非常美丽吸引人 想要浏览精彩的小姐姐短视频&#xff0c;不妨试试这款…

智能位移监测,更新传统井盖的功能

在城市的街道和人行道上&#xff0c;我们经常可以看到井盖的存在。井盖作为地下管道和设施的入口承载着重要的功能。然而过去我们可能忽视了一个重要的问题&#xff1a;井盖的位移可能会对人们产生潜在的威胁。为了保护我们的生活安全和交通畅通无阻和确保城市生命线安全稳定&a…

老师如何在家长群发布通知?

班级查询系统是一种方便快捷的方式&#xff0c;让学生或家长能够随时在线查看老师发布的通知或回执。通过使用各种代码、Excel、小程序工具&#xff0c;老师可以轻松实现学生自助查询班级信息的功能。本文将向老师介绍如何发布成绩查询通知&#xff0c;帮助学生和家长更好地了解…

大势所趋!机器视觉替换传统人工,深眸科技以工业AI视觉赋能生产

如今&#xff0c;在工业4.0的浪潮下&#xff0c;人工智能技术凭借着优化生产流程、实现个性化定制、保障产品安全、促进产业变革等优势&#xff0c;逐渐成为制造业数智化转型的“利器”之一&#xff0c;其在工业生产中的广泛应用使传统制造业焕发生机。 机器视觉作为人工智能快…

非 dict 字典类型的处理

在Python的requests库中&#xff0c;使用data参数发送POST请求时&#xff0c;如果传入的数据对象不是直接继承自dict的字典类型&#xff0c;就会抛出TypeError异常。 Python的requests库是一个广泛用于HTTP请求的库&#xff0c;它提供了丰富的功能来发送和处理HTTP请求。其中&…

Workplace Search 的演变:使用 Elasticsearch 搜索你的私人数据

作者&#xff1a;Dana Juratoni, Aditya Tripathi Workplace Search 功能将来将与 Elastic Search 合并。 这是你需要了解的内容。 生成式人工智能技术的最新进展为搜索带来了一系列可能性。 随着开发人员构建新的体验&#xff0c;用户正在采用新的搜索使用方式 —— 从用自然…

基础课7——数据预处理

在智能客服系统中&#xff0c;数据预处理是进行自然语言处理&#xff08;NLP&#xff09;的关键步骤之一。它是对用户输入的文本数据进行分析、处理和转换的过程&#xff0c;目的是将原始文本数据转化为计算机可理解的语言&#xff0c;为后续的智能回答提供支持。 1.什么是数据…

html在线生成二维码(附源码)

文章目录 1.设计来源1.1 主界面1.2 美化功能 2.效果和源码2.1 动态效果2.2 源代码 源码下载 作者&#xff1a;xcLeigh 文章地址&#xff1a;https://blog.csdn.net/weixin_43151418/article/details/134458927 html二维码生成&#xff08;附源码&#xff09;&#xff0c;生成二…

Cow Lineup S——离散化、单调队列、双指针

题目描述 思路 x、id不大于1亿&#xff0c;数据量太大&#xff0c;使用离散化将id离散化成一串从1开始连续的编号&#xff0c;使用map集合进行离散化使用双指针维护一段区间&#xff0c;这段区间满足每个编号都包含 如何使用map集合进行离散化&#xff1f; 维护一个变量nums…

在Linux上安装Oracle 数据库 11g (含静默方式安装)

好久没碰11g了&#xff0c;今天&#xff08;2023年11月16日&#xff09;因为有个需求又装了一遍。 在OCI上安装了一个Oracle Linux 6实例&#xff1a; $ uname -a Linux instance-20231116-1239-db11g 4.1.12-124.80.1.el6uek.x86_64 #2 SMP Mon Oct 9 02:32:10 PDT 2023 x86…

Springboot升级为3.0.6

版本升级 Springboot升级为3.0.6 版本从原来的2.7.12换成了3.0.6 <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>3.0.6</version><relativePath/> <…

使用宝塔面板安装mysql

1.第一步 在官网https://www.bt.cn/new/download.html下载页面直接在服务器控制面板复制这里的代码下载即可 2.第二步 下载好后按照服务器面版上有个公网地址&#xff0c;含有用户名和密码&#xff0c;保存好&#xff0c;然后通过公网地址打开一个网页&#xff0c;绑定自己注册…

【数据结构与算法】JavaScript实现双向链表

文章目录 一、双向链表简介二、封装双向链表类2.0.创建双向链表类2.1.append(element)2.2.toString()汇总2.3.insert(position,element)2.4.get(position)2.5.indexOf(element)2.7.update(position,element)2.8.removeAt(position)2.9.其他方法2.10.完整实现 三、链表结构总结3…

苍穹外卖--新增员工

请求方式Post,请求参数&#xff1a; 用EmployeeDTO类接收参数 Controller层实现&#xff1a; PostMappingpublic Result save(RequestBody EmployeeDTO employeeDTO){employeeService.save(employeeDTO);return Result.success();}service层实现&#xff1a; Overridepublic …

国家大基金三期线上金融正式倒计时!11月17日,共启芯片产业新篇章

国家大基金三期线上金融正式倒计时&#xff01;11月17日&#xff0c;共启芯片产业新篇章 新时代浪潮下&#xff0c;全球化进程不断推动各科技大国的核心发展&#xff0c;芯片作为强有力的竞争标志&#xff0c;是国与国之间的重要技术战争焦点。同时&#xff0c;国内基金发展势…

数字艺术藏品软件的独特创新与未来趋势

随着科技的飞速发展&#xff0c;数字艺术藏品软件逐渐崭露头角&#xff0c;为艺术爱好者们提供了一个全新的收藏方式。这类软件不仅为艺术家提供了展示作品的平台&#xff0c;也为收藏家们提供了收藏和分享艺术品的渠道。本文将从开发思路、技术实现、市场前景等方面探讨数字艺…

TP_Link WR886N 硬改闪存16M内存64M,刷入openwrt

一、换内存&#xff0c;拆闪存&#xff1a; 1、先原机开机试试是否功能正常&#xff1b; 2、拆机&#xff0c;比较难拆&#xff0c;容易坏外壳&#xff1b; 3、找到内存和闪存&#xff0c;用胶带把边上的小元件&#xff0c;电阻都贴好&#xff1b; 4、加助焊油&#xff0c;用风…