传递函数的推导和理解

news2025/1/16 18:05:05

传递函数的推导和理解

假设有一个线性系统,在一般情况下,它的激励 x ( t ) x(t) x(t)与响应 y ( t ) y(t) y(t)所满足的的关系,可用下列微分方程来表示:
a n y ( n ) + a n − 1 y ( n − 1 ) + a n − 2 y ( n − 2 ) + ⋯ + a 1 y ′ + a 0 y = b m x ( m ) + b m − 1 x ( m − 1 ) + b m − 2 x ( m − 2 ) + ⋯ + b 1 x ′ + b 0 x (1) \begin{array}{l}{a_n}{y^{(n)}} + {a_{n - 1}}{y^{(n - 1)}} + {a_{n - 2}}{y^{(n - 2)}} + \cdots + {a_1}y' + {a_0}y\\ = {b_m}{x^{({\rm{m}})}} + {b_{m - 1}}{x^{({\rm{m - 1}})}} + {b_{m - 2}}{x^{({\rm{m - 2}})}} + \cdots + {b_1}x' + {b_0}x\end{array}\tag1 any(n)+an1y(n1)+an2y(n2)++a1y+a0y=bmx(m)+bm1x(m1)+bm2x(m2)++b1x+b0x(1)
其中, a 0 , a 1 , ⋯   , a n , b 0 , b 1 , ⋯   , b m {a_0},{a_1}, \cdots ,{a_n},{b_0},{b_1}, \cdots ,{b_m} a0,a1,,an,b0,b1,,bm均为常数, m , n m,n m,n为正整数, n ≥ m n \ge m nm

L [ y ( t ) ] = Y ( s ) , L [ x ( t ) ] = X ( s ) \mathscr{L}[y(t)]=Y(s),\mathscr{L}[x(t)]=X(s) L[y(t)]=Y(s),L[x(t)]=X(s),根据Laplace变换的微分性质,有

L [ a k y ( k ) ] = a k s k Y ( s ) − a k [ s k − 1 y ( 0 ) + s k − 2 y ′ ( 0 ) + s k − 3 y ′ ′ ( 0 ) + ⋯ + s k − ( k − 1 ) y ( k − 2 ) ( 0 ) + s 0 y ( k − 1 ) ( 0 ) ] ( k = 0 , 1 , 2 , ⋯   , n ) {\mathscr L}[{a_k}{y^{(k)}}] = {a_k}{s^k}Y(s) - {a_k}[{s^{k - 1}}y(0) + {s^{k - 2}}y'(0) + {s^{k - 3}}y''(0) + \cdots + {s^{k - (k - 1)}}{y^{(k - 2)}}(0) + {s^0}{y^{(k - 1)}}(0)]\\(k = 0,1,2, \cdots ,n) L[aky(k)]=akskY(s)ak[sk1y(0)+sk2y(0)+sk3y′′(0)++sk(k1)y(k2)(0)+s0y(k1)(0)](k=0,1,2,,n)

L [ b k x ( k ) ] = b k s k X ( s ) − b k [ s k − 1 x ( 0 ) + s k − 2 x ′ ( 0 ) + s k − 3 x ′ ′ ( 0 ) + ⋯ + s k − ( k − 1 ) x ( k − 2 ) ( 0 ) + s 0 x ( k − 1 ) ( 0 ) ] ( k = 0 , 1 , 2 , ⋯   , m ) {\mathscr L}[{b_k}{x^{(k)}}] = {b_k}{s^k}X(s) - {b_k}[{s^{k - 1}}x(0) + {s^{k - 2}}x'(0) + {s^{k - 3}}x''(0) + \cdots + {s^{k - (k - 1)}}{x^{(k - 2)}}(0) + {s^0}{x^{(k - 1)}}(0)] \\(k = 0,1,2, \cdots ,m) L[bkx(k)]=bkskX(s)bk[sk1x(0)+sk2x(0)+sk3x′′(0)++sk(k1)x(k2)(0)+s0x(k1)(0)](k=0,1,2,,m)

对式子(1)两边进行Laplace变换并通过整理,可得:
D ( s ) Y ( s ) − M h y ( s ) = M ( s ) X ( s ) − M h x ( s ) D(s)Y(s) - {M_{hy}}(s) = M(s)X(s) - {M_{hx}}(s) D(s)Y(s)Mhy(s)=M(s)X(s)Mhx(s)
即:
Y ( s ) = M ( s ) D ( s ) X ( s ) + M h y ( s ) − M h x ( s ) D ( s ) (2) Y(s) = \frac{{M(s)}}{{D(s)}}X(s) + \frac{{{M_{hy}}(s) - {M_{hx}}(s)}}{{D(s)}}\tag2 Y(s)=D(s)M(s)X(s)+D(s)Mhy(s)Mhx(s)(2)
其中,
D ( s ) = a n s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 , D(s) = {a_n}{s^n} + {a_{n - 1}}{s^{n - 1}} + \cdots + {a_1}s + {a_0}, D(s)=ansn+an1sn1++a1s+a0,
M ( s ) = b m s m + b m − 1 s m − 1 + ⋯ + b 1 s + b 0 , M(s) = {b_m}{s^m} + {b_{m - 1}}{s^{m - 1}} + \cdots + {b_1}s + {b_0}, M(s)=bmsm+bm1sm1++b1s+b0,

M h y ( s ) = a n y ( 0 ) s n − 1 + [ a n y ′ ( 0 ) + a n − 1 y ( 0 ) ] s n − 2 + [ a n y ′ ′ ( 0 ) + a n − 1 y ′ ( 0 ) + a n − 2 y ( 0 ) ] s n − 3 + ⋯ + [ a n y ( n − 2 ) ( 0 ) + a n − 1 y ( n − 3 ) ( 0 ) + ⋯ + a 2 y ( 0 ) ] s + [ a n y ( n − 1 ) ( 0 ) + a n − 1 y ( n − 2 ) ( 0 ) + ⋯ + a 1 y ( 0 ) ] , {M_{hy}}(s) = {a_n}y(0){s^{n - 1}} + [{a_n}y'(0) + {a_{n - 1}}y(0)]{s^{n - 2}} + [{a_n}y''(0) + {a_{n - 1}}y'(0) + {a_{n - 2}}y(0)]{s^{n - 3}} + \cdots + [{a_n}{y^{(n - 2)}}(0) + {a_{n - 1}}{y^{(n - 3)}}(0) + \cdots + {a_2}y(0)]s + [{a_n}{y^{(n - 1)}}(0) + {a_{n - 1}}{y^{(n - 2)}}(0) + \cdots + {a_1}y(0)], Mhy(s)=any(0)sn1+[any(0)+an1y(0)]sn2+[any′′(0)+an1y(0)+an2y(0)]sn3++[any(n2)(0)+an1y(n3)(0)++a2y(0)]s+[any(n1)(0)+an1y(n2)(0)++a1y(0)],

M h x ( s ) = b m x ( 0 ) s m − 1 + [ b m x ′ ( 0 ) + b m − 1 x ( 0 ) ] s m − 2 + [ b m x ′ ′ ( 0 ) + b m − 1 x ′ ( 0 ) + b m − 2 x ( 0 ) ] s m − 3 + ⋯ + [ b m x ( m − 2 ) ( 0 ) + b m − 1 x ( m − 3 ) ( 0 ) + ⋯ + b 2 x ( 0 ) ] s + [ b m x ( m − 1 ) ( 0 ) + b m − 1 x ( n − 2 ) ( 0 ) + ⋯ + b 1 x ( 0 ) ] , {M_{hx}}(s) = {b_m}x(0){s^{m - 1}} + [{b_m}x'(0) + {b_{m - 1}}x(0)]{s^{m - 2}} + [{b_m}x''(0) + {b_{m - 1}}x'(0) + {b_{m - 2}}x(0)]{s^{m - 3}} + \cdots + [{b_m}{x^{(m - 2)}}(0) + {b_{m - 1}}{x^{(m - 3)}}(0) + \cdots + {b_2}x(0)]s + [{b_m}{x^{(m - 1)}}(0) + {b_{m - 1}}{x^{(n - 2)}}(0) + \cdots + {b_1}x(0)], Mhx(s)=bmx(0)sm1+[bmx(0)+bm1x(0)]sm2+[bmx′′(0)+bm1x(0)+bm2x(0)]sm3++[bmx(m2)(0)+bm1x(m3)(0)++b2x(0)]s+[bmx(m1)(0)+bm1x(n2)(0)++b1x(0)],

若令 G ( s ) = M ( s ) G ( s ) G(s) = \frac{{M(s)}}{{G(s)}} G(s)=G(s)M(s) G h ( s ) = M h y ( s ) − M h x ( s ) D ( s ) {G_h}(s) = \frac{{{M_{hy}}(s) - {M_{hx}}(s)}}{{D(s)}} Gh(s)=D(s)Mhy(s)Mhx(s),则式(2)可写为:
Y ( s ) = G ( s ) X ( s ) + G h ( s ) (3) Y(s) = G(s)X(s) + {G_h}(s)\tag3 Y(s)=G(s)X(s)+Gh(s)(3)

式子中:
G ( s ) = b m s m + b m − 1 s m − 1 + ⋯ + b 1 s + b 0 a n s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 (4) G(s) = \frac{{{b_m}{s^m} + {b_{m - 1}}{s^{m - 1}} + \cdots + {b_1}s + {b_0}}}{{{a_n}{s^n} + {a_{n - 1}}{s^{n - 1}} + \cdots + {a_1}s + {a_0}}}\tag4 G(s)=ansn+an1sn1++a1s+a0bmsm+bm1sm1++b1s+b0(4)
我们称 G ( s ) G(s) G(s)为系统的传递函数。它表达了系统本身的特性,而与激励及系统的初始状态无关。
但是 G h ( s ) G_{h}(s) Gh(s)则由激励和系统本身的初值条件所决定。若这些初始条件全为0,即 G h ( s ) G_{h}(s) Gh(s)=0时,式子(3)可写成:
Y ( s ) = G ( s ) X ( s ) 或 G ( s ) = Y ( s ) X ( s ) (5) \begin{array}{l}Y(s) = G(s)X(s) 或 G(s) = \frac{{Y(s)}}{{X(s)}}\end{array}\tag5 Y(s)=G(s)X(s)G(s)=X(s)Y(s)(5)

式子(5)表明,在零初值条件下,系统的传递函数等于其响应的Laplace变换与其激励的Laplace变换之比。

因此,当我们知道系统的传递函数后,就可以由系统的激励按照式子(3)或式子(5)求出其响应的拉普拉斯变换 Y ( s ) Y(s) Y(s),再通过求逆变换可得其响应 y ( t ) y(t) y(t)

系统的激励 x ( t ) x(t) x(t),系统的响应 y ( t ) y(t) y(t),以及它们的拉普拉斯变换 X ( s ) X(s) X(s), Y ( s ) Y(s) Y(s)和传递函数的关系如图1所示。

图1 系统激励、响应以及传递函数之间的关系
图1 系统激励、响应以及传递函数之间的关系

需要说明的是,传递函数不表明系统的物理性质。许多性质不同的物理系统,可以有相同的传递函数。而传递函数不同的物理系统,即使系统的激励相同,其响应也是不相同的,因此,对传递函数的分析和研究,就能统一处理各种物理性质不同的额线性系统。
简而言之,通过对系统微分方程进行拉普拉斯变换,推导出了系统的传递函数 G ( s ) G(s) G(s)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1218286.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

1分钟精准预测未来10天天气,谷歌开源GraphCast

11月15日,谷歌旗下著名AI研究机构Deepmind在官网宣布,开源天气大模型GraphCast,并公布了论文。 据悉,GraphCast可以在1分钟内,精准预测而来全球10天的天气情况,同时可以提前预警大暴雨、大风雪、洪水、高温…

【Linux网络】搭建内外网的网关服务器,实现DNS分离解析与DHCP自动分配

一、实验要求: 二、实验思路剖析: 网关服务器: 客户端准备: 实操: 第一步先安装dhcp服务和bind服务 第二步双网卡,配置网卡的ip地址 第三步:开始配置dhcp 第四步:做dns分离解析…

Vue|props配置

props是Vue中用于传递数据的属性。通过在子组件的选项中定义props属性,可以指定子组件可以接收的数据以及其他配置选项。父组件可以通过在子组件上使用特定的属性来传递数据。 目录 目录 App.vue 什么是App.vue 组件引用 props配置 组件复用 案例1&#xff1a…

吉利银河L6顶配 官方OTA升级降低充电速度

互联网是有记忆的 你宣传充电口 卖出去又更新降低速度 属于诈骗 吉利新车上市两个月官降1w,希望大家引以为戒,可以买,但是刚出别着急做韭菜

AE 的软件、硬件、驱动控制、调试策略(没有算法)

#灵感# AE是个值得推敲再推敲的模块,有意思。 目录 相关的硬件-光圈: 相关的软件-曝光-ISO: ISP中的sensor AE 组成: sensor AE的流程及控制: tuning时AE的一些策略: 相关的硬件-光圈: 光…

网络安全(大厂面试真题集)

前言 随着国家政策的扶持,网络安全行业也越来越为大众所熟知,想要进入到网络安全行业的人也越来越多。 为了拿到心仪的 Offer 之外,除了学好网络安全知识以外,还要应对好企业的面试。 作为一个安全老鸟,工作这么多年…

t-product的matlab实现

t-product是一个比较好的概念,相对应于矩阵中的乘法。 定义如下 这里的 circ(A),MatVec(b) 的定义分别如下 这么定义的原因是为了映射到FFT域里面去,简化计算。 上面的一段摘录说明:直接按照定义来计算,会耗费大量的计算资源。因…

【2.5w字吐血总结 | 新手必看】全网最详细MySQL笔记

写在前面 鉴于全网MySQL知识点的总结分散难懂、良莠不齐,为了避免初学者少走弯路,更好更快地掌握MySQL知识,博主特地将自己所学的笔记分享出来。 如果想深度理解掌握MySQL,欢迎订阅专栏:MySQL进阶之路【秋说】&#…

adguarg通过dns代理全局过滤广告,全系统操作指南

路由器dns配置 安卓(鸿蒙) 设置>>其他网络与连接>>私人DNS(不同手机系统设置名称会有些许出入,但是大差不差) (左图鸿蒙):将域名m.centos.chat填入手机私人DNS IOS系统 将代理服务器IP&am…

delphi电子处方流转(医院)

【delphi电子处方流转(医院)】支持 就诊登记、电子处方上传预核验、处方处方医保电子签名、电子处方上传、电子处方撤销、电子处方信息查询、电子处方审核结果查询、电子处方取药结果查询、电子处方药品目录查询等功能。

UE4动作游戏实例RPG Action解析四:装备系统

导语: 以加血道具为例,详细分析拆解ActionRPG的装备系统,包含装备系统需求和数据结构设计,以及实现 一、装备系统需求: 装备槽: 已获取装备和未获取装备: 当已经装备一个道具时,再次捡到道具,会把道具放在装备库,不会放在装备槽中, 当没有装备道具时,会拾取道具…

Digicert证书:您的网络安全守护神

在当今数字化的世界中,网络安全已经成为每一个企业和个人必须面对的问题。而Digicert品牌证书,就是您网络安全的最佳选择。它不仅具有强大的安全性和稳定性,还能广泛应用于各种场景,为您提供全方位的保护。 首先,我们要…

Xrdp+内网穿透实现远程访问Linux Kali桌面

XrdpCpolar实现远程访问Linux Kali桌面 文章目录 XrdpCpolar实现远程访问Linux Kali桌面前言1. Kali 安装Xrdp2. 本地远程Kali桌面3. Kali 安装Cpolar 内网穿透4. 配置公网远程地址5. 公网远程Kali桌面连接6. 固定连接公网地址7. 固定地址连接测试 前言 Kali远程桌面的好处在于…

【硬核】把一个MOS管制作成开关电路

你要是想读懂这篇文章,请先去了解MOS管的基础知识,本文是在基础之上做出的一部分扩展,可能有一点点深,请各位同学注意。 本文带你了解MOS管的开通/关断原理,使用PMOS做上管、NMOS做下管都是比较方便,使用PM…

腾讯云服务器新用户专享优惠券,腾讯云新用户代金券领取入口汇总

什么是腾讯云新用户专享优惠券? 腾讯云新用户专享优惠券是腾讯云为新用户提供的一种特别优惠。你可以在购买腾讯云服务器时使用这些优惠券,以更低的价格获得优质的云服务。 为了回馈广大新用户,腾讯云服务器推出了一系列优惠活动&#xff0…

KeyarchOS的CentOS迁移实践:使用操作系统迁移工具X2Keyarch V2.0

KeyarchOS的CentOS迁移实践:使用操作系统迁移工具X2Keyarch V2.0 作者: 猫头虎博主 文章目录 KeyarchOS的CentOS迁移实践:使用操作系统迁移工具X2Keyarch V2.0🐅摘要引言1. 迁移前的精心准备1.1 系统环境介绍1.2 深度数据验证1.2.…

Linux下好玩有趣的指令(持续更新)

适用于centOS下,别的Linux换个指令就行,内容是一样的 centOS有的指令安装不了?试试拓展yum源,再安装基本就OK啦! yum install -y epel-release 下面是作者在centOS环境下亲测可以使用的,如果你是root用户直…

【ES6标准入门】JavaScript中的模块Module语法的使用细节:export命令和imprt命令详细使用,超级详细!!!

😁 作者简介:一名大四的学生,致力学习前端开发技术 ⭐️个人主页:夜宵饽饽的主页 ❔ 系列专栏:JavaScript进阶指南 👐学习格言:成功不是终点,失败也并非末日,最重要的是继…

win10查看wifi密码

文章目录 标题win10查看wifi密码命令方式窗口 标题win10查看wifi密码 命令方式 # name 为指定的wifi名称 netsh wlan show profiles name"TP-LINK_1946" keyclear窗口

​如何使用ArcGIS Pro制作渐变河流效果

对于面要素的河流水系,制作渐变效果方法比较简单,如果是线要素的河流有办法制作渐变效果吗,答案是肯定的,这里为大家介绍一下制作方法,希望能对你有所帮助。 数据来源 本教程所使用的数据是从水经微图中下载的水系数…