Python 获取北上广深历史天气数据并做数据可视化

news2024/11/23 21:37:09

嗨喽,大家好呀~这里是爱看美女的茜茜呐

知识点:

  1. 动态数据抓包

  2. requests发送请求

  3. 结构化+非结构化数据解析

开发环境:

  1. python 3.8 运行代码

  2. pycharm 2022.3.2 辅助敲代码 专业版

  3. requests 发送请求 pip install requests

  4. parsel 解析数据 pip install parsel

爬虫案例实现流程:

一. 抓包分析 (找到数据来源)

https://tianqi.2345.com/Pc/GetHistoryareaInfo%5BareaId%5D=57687&areaInfo%5BareaType%5D=2&date%5Byear%5D=2023&date%5Bmonth%5D=3        

二. 代码实现

  1. 发送请求 (访问 数据来源的url)

  2. 获取数据

  3. 提取数据 (将需要的信息提取出来)

  4. 保存数据 (保存为csv表格数据)

获取数据

'''
python资料获取看这里噢!! 小编 V:Pytho8987(记得好友验证备注:6 否则可能不通过)
即可获取:文章源码/教程/资料/解答等福利,还有不错的视频学习教程和PDF电子书!
'''
import requests
import parsel
import csv
import execjs


f = open('demo.js', mode='r', encoding='utf-8').read()
ctx = execjs.compile(f)
city_list = ctx.call("get_city")
areaInfoList = []
for city_li in city_list:
    if city_li:
        for city_info in city_li:
            info_list = city_info.split('|')
            for info in info_list:
                city = info.split(' ')[-1]
                city_name = city.split('-')[0]
                city_code = city.split('-')[1]
                areaInfoList.append([city_name, city_code])
# print(areaInfoList)
with open('tianqi.csv', mode='a', newline='', encoding='utf-8') as f:
    csv.writer(f).writerow(["日期", "最高温", "最低温", "天气", "风力风向", "空气质量指数", "城市"])

for areaInfo in areaInfoList:
    city_name = areaInfo[0]
    city_code = areaInfo[1]
    for year in range(2020, 2023):
        for month in range(1, 13):
            url = f'https://tianqi.2345.com/Pc/GetHistory?areaInfo%5BareaId%5D={city_code}&areaInfo%5BareaType%5D=2&date%5Byear%5D={year}&date%5Bmonth%5D={month}'
            # 1. 发送请求 (访问 数据来源的url)
            response = requests.get(url)
            # 2. 获取数据
            json_data = response.json() # .json()可以将拿到的text内容 转为字典数据
            # 3. 提取数据 (将需要的信息提取出来)
            html_data = json_data.get('data')
            # tr
            select = parsel.Selector(html_data)
            trs = select.xpath('//tr')
            for tr in trs[1:]:
                tds = tr.xpath('./td//text()').getall()
                tds.append(city_name)
                print(tds)
                with open('tianqi.csv', mode='a', newline='', encoding='utf-8') as f:
                    csv.writer(f).writerow(tds)

数据可视化

导入包

'''
python资料获取看这里噢!! 小编 V:Pytho8987(记得好友验证备注:6 否则可能不通过)
即可获取:文章源码/教程/资料/解答等福利,还有不错的视频学习教程和PDF电子书!
'''
import pandas as pd
import datetime
from pyecharts import options as opts
from pyecharts.charts import *
from pyecharts.commons.utils import JsCode
读入数据
data = pd.read_csv('天气.csv')
data

数据预览
data.sample(5)

data.info()

分割日期/星期

data[['日期','星期']] = data['日期'].str.split(' ',expand=True,n=1)
data

去除多余字符

'''
python资料获取看这里噢!! 小编 V:Pytho8987(记得好友验证备注:6 否则可能不通过)
即可获取:文章源码/教程/资料/解答等福利,还有不错的视频学习教程和PDF电子书!
'''
data[['最高温度','最低温度']] = data[['最高温度','最低温度']].apply(lambda x: x.str.replace('°','').replace('', '0'))
data.head()

计算下雪天气

data.loc[data['天气'].str.contains('雪'),'下雪吗']='是'
data.fillna('否',inplace=True)

分割日期时间

data['日期'] = pd.to_datetime(data['日期'])
data[['最高温度','最低温度']] = data[['最高温度','最低温度']].astype('int')
data['年份'] = data['日期'].dt.year
data['月份'] = data['日期'].dt.month
data['日'] = data['日期'].dt.day
# 预览
data.sample(5)

各城市初雪的时间

s_data = data[data['下雪吗']=='是']
s_data[(s_data['月份']>=9)].groupby('年份').first().reset_index()

各城市下雪天气分布

s_data.groupby(['城市','年份'])['日期'].count().to_frame('下雪天数').reset_index()
做透视表
data_bj = data[(data['年份'] == 2021) & (data['城市'] == '北京')]
data_bj = data_bj.groupby(['月份','天气'], as_index=False)['日期'].count()
'''
python资料获取看这里噢!! 小编 V:Pytho8987(记得好友验证备注:6 否则可能不通过)
即可获取:文章源码/教程/资料/解答等福利,还有不错的视频学习教程和PDF电子书!
'''
data_pivot =  pd.pivot(data_bj,
                values='日期',
                index='月份',
                columns='天气')
data_pivot = data_pivot.astype('float')
# 按照 索引年月倒序排序
data_pivot.sort_index(ascending=False,inplace=True)

data_pivot
北上广深2021年10月份天气热力图分布
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import seaborn as sns

#设置全局默认字体 为 雅黑
plt.rcParams['font.family'] = ['Microsoft YaHei'] 
# 设置全局轴标签字典大小
plt.rcParams["axes.labelsize"] = 14  
# 设置背景
sns.set_style("darkgrid",{"font.family":['Microsoft YaHei', 'SimHei']})  
# 设置画布长宽 和 dpi
plt.figure(figsize=(18,8),dpi=100)
# 自定义色卡
cmap = mcolors.LinearSegmentedColormap.from_list("n",['#95B359','#D3CF63','#E0991D','#D96161','#A257D0','#7B1216']) 
# 绘制热力图

ax = sns.heatmap(data_pivot, cmap=cmap, vmax=30, 
                 annot=True, # 热力图上显示数值
                 linewidths=0.5,
                ) 
# 将x轴刻度放在最上面
ax.xaxis.set_ticks_position('top') 
plt.title('北京最近10个月天气分布',fontsize=16) #图片标题文本和字体大小
plt.show()

data_gz= data[(data['年份'] == 2021) & (data['城市'] == '广州')]
data_gz = data_gz.groupby(['月份','天气'], as_index=False)['日期'].count()
data_sz= data[(data['年份'] == 2021) & (data['城市'] == '深圳')]
data_sz = data_sz.groupby(['月份','天气'], as_index=False)['日期'].count()
data_sh= data[(data['年份'] == 2021) & (data['城市'] == '上海')]
data_sh = data_sh.groupby(['月份','天气'], as_index=False)['日期'].count()
'''
python资料获取看这里噢!! 小编 V:Pytho8987(记得好友验证备注:6 否则可能不通过)
即可获取:文章源码/教程/资料/解答等福利,还有不错的视频学习教程和PDF电子书!
'''
data_pivot_sz =  pd.pivot(data_sz,
                values='日期',
                index='月份',
                columns='天气')
data_pivot_sz = data_pivot_sz.astype('float')
# 按照 索引年月倒序排序
data_pivot_sz.sort_index(ascending=False,inplace=True)

#设置全局默认字体 为 雅黑
plt.rcParams['font.family'] = ['Microsoft YaHei'] 
# 设置全局轴标签字典大小
plt.rcParams["axes.labelsize"] = 14  
# 设置背景
sns.set_style("darkgrid",{"font.family":['Microsoft YaHei', 'SimHei']})  
# 设置画布长宽 和 dpi
plt.figure(figsize=(18,8),dpi=100)
# 自定义色卡
cmap = mcolors.LinearSegmentedColormap.from_list("n",['#95B359','#D3CF63','#E0991D','#D96161','#A257D0','#7B1216']) 
# 绘制热力图

ax_sz = sns.heatmap(data_pivot_sz, cmap=cmap, vmax=31, 
                 annot=True, # 热力图上显示数值
                 linewidths=0.5,
                ) 
# 将x轴刻度放在最上面
ax_sz.xaxis.set_ticks_position('top') 
plt.title('深圳最近10个月天气分布',fontsize=16) #图片标题文本和字体大小
plt.show()

data_pivot_gz =  pd.pivot(data_gz,
                values='日期',
                index='月份',
                columns='天气')
data_pivot_gz = data_pivot_gz.astype('float')
# 按照 索引年月倒序排序
data_pivot_gz.sort_index(ascending=False,inplace=True)

#设置全局默认字体 为 雅黑
plt.rcParams['font.family'] = ['Microsoft YaHei'] 
# 设置全局轴标签字典大小
plt.rcParams["axes.labelsize"] = 14  
# 设置背景
sns.set_style("darkgrid",{"font.family":['Microsoft YaHei', 'SimHei']})  
# 设置画布长宽 和 dpi
plt.figure(figsize=(18,8),dpi=100)
# 自定义色卡
cmap = mcolors.LinearSegmentedColormap.from_list("n",['#95B359','#D3CF63','#E0991D','#D96161','#A257D0','#7B1216']) 
# 绘制热力图

ax_sz = sns.heatmap(data_pivot_gz, cmap=cmap, vmax=31, 
                 annot=True, # 热力图上显示数值
                 linewidths=0.5,
                ) 
# 将x轴刻度放在最上面
ax_sz.xaxis.set_ticks_position('top') 
plt.title('广州最近10个月天气分布',fontsize=16) #图片标题文本和字体大小
plt.show()

'''
python资料获取看这里噢!! 小编 V:Pytho8987(记得好友验证备注:6 否则可能不通过)
即可获取:文章源码/教程/资料/解答等福利,还有不错的视频学习教程和PDF电子书!
'''
data_pivot_sh =  pd.pivot(data_sh,
                values='日期',
                index='月份',
                columns='天气')
data_pivot_sh = data_pivot_sh.astype('float')
# 按照 索引年月倒序排序
data_pivot_sh.sort_index(ascending=False,inplace=True)

#设置全局默认字体 为 雅黑
plt.rcParams['font.family'] = ['Microsoft YaHei'] 
# 设置全局轴标签字典大小
plt.rcParams["axes.labelsize"] = 14  
# 设置背景
sns.set_style("darkgrid",{"font.family":['Microsoft YaHei', 'SimHei']})  
# 设置画布长宽 和 dpi
plt.figure(figsize=(18,8),dpi=100)
# 自定义色卡
cmap = mcolors.LinearSegmentedColormap.from_list("n",['#95B359','#D3CF63','#E0991D','#D96161','#A257D0','#7B1216']) 
# 绘制热力图

ax_sz = sns.heatmap(data_pivot_sh, cmap=cmap, vmax=31, 
                 annot=True, # 热力图上显示数值
                 linewidths=0.5,
                ) 
# 将x轴刻度放在最上面
ax_sz.xaxis.set_ticks_position('top') 
plt.title('上海最近10个月天气分布',fontsize=16) #图片标题文本和字体大小
plt.show()

data_bj = data[(data['城市']=='北京') & (data['年份'] == 2021)]
data_bj['日期'] = pd.to_datetime(data_bj.日期,format="%Y年%m月%d日")
data_bj = data_bj.sort_values(by='日期',ascending=True)
北京2021年每日最高最低温度变化
'''
python资料获取看这里噢!! 小编 V:Pytho8987(记得好友验证备注:6 否则可能不通过)
即可获取:文章源码/教程/资料/解答等福利,还有不错的视频学习教程和PDF电子书!
'''
color0 = ['#FF76A2','#24ACE6']
color_js0 = """new echarts.graphic.LinearGradient(0, 1, 0, 0,
    [{offset: 0, color: '#FFC0CB'}, {offset: 1, color: '#ed1941'}], false)"""
color_js1 = """new echarts.graphic.LinearGradient(0, 1, 0, 0,
    [{offset: 0, color: '#FFFFFF'}, {offset: 1, color: '#009ad6'}], false)"""

tl = Timeline()
for i in range(0,len(data_bj)):
    coordy_high = list(data_bj['最高温度'])[i]
    coordx = list(data_bj['日期'])[i]
    coordy_low = list(data_bj['最低温度'])[i]
    x_max = list(data_bj['日期'])[i]+datetime.timedelta(days=10)
    y_max = int(max(list(data_bj['最高温度'])[0:i+1]))+3
    y_min = int(min(list(data_bj['最低温度'])[0:i+1]))-3
    title_date = list(data_bj['日期'])[i].strftime('%Y-%m-%d')
    c = (
        Line(
            init_opts=opts.InitOpts(
            theme='dark',
            #设置动画
            animation_opts=opts.AnimationOpts(animation_delay_update=800),#(animation_delay=1000, animation_easing="elasticOut"),
            #设置宽度、高度
            width='1500px',
            height='900px', )
        )
        .add_xaxis(list(data_bj['日期'])[0:i])
        .add_yaxis(
            series_name="",
            y_axis=list(data_bj['最高温度'])[0:i], is_smooth=True,is_symbol_show=False,
            linestyle_opts={
                   'normal': {
                       'width': 3,
                       'shadowColor': 'rgba(0, 0, 0, 0.5)',
                       'shadowBlur': 5,
                       'shadowOffsetY': 10,
                       'shadowOffsetX': 10,
                       'curve': 0.5,
                       'color': JsCode(color_js0)
                   }
               },
            itemstyle_opts={
            "normal": {
                "color": JsCode(
                    """new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                offset: 0,
                color: '#ed1941'
            }, {
                offset: 1,
                color: '#009ad6'
            }], false)"""
                ),
                "barBorderRadius": [45, 45, 45, 45],
                "shadowColor": "rgb(0, 160, 221)",
            }
        },

        )
        .add_yaxis(
            series_name="",
            y_axis=list(data_bj['最低温度'])[0:i], is_smooth=True,is_symbol_show=False,
#             linestyle_opts=opts.LineStyleOpts(color=color0[1],width=3),
            itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_js1)),
            linestyle_opts={
                   'normal': {
                       'width': 3,
                       'shadowColor': 'rgba(0, 0, 0, 0.5)',
                       'shadowBlur': 5,
                       'shadowOffsetY': 10,
                       'shadowOffsetX': 10,
                       'curve': 0.5,
                       'color': JsCode(color_js1)
                   }
               },
        )
        .set_global_opts(
            title_opts=opts.TitleOpts("北京2021年每日最高最低温度变化\n\n{}".format(title_date),pos_left=330,padding=[30,20]),
            xaxis_opts=opts.AxisOpts(type_="time",max_=x_max),#, interval=10,min_=i-5,split_number=20,axistick_opts=opts.AxisTickOpts(length=2500),axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(color="grey"))
            yaxis_opts=opts.AxisOpts(min_=y_min,max_=y_max),#坐标轴颜色,axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(color="grey"))
        )
    )
    tl.add(c, "{}".format(list(data_bj['日期'])[i]))
    tl.add_schema(
        axis_type='time',
        play_interval=100,  # 表示播放的速度
        pos_bottom="-29px",
        is_loop_play=False, # 是否循环播放
        width="780px",
        pos_left='30px',
        is_auto_play=True,  # 是否自动播放。
        is_timeline_show=False)
tl.render('1.html')

data_10 = data[(data['年份'] == 2022) & ( data['月份'] == 10)]
data_10.head()
北上广深10月份每日最高气温变化
'''
python资料获取看这里噢!! 小编 V:Pytho8987(记得好友验证备注:6 否则可能不通过)
即可获取:文章源码/教程/资料/解答等福利,还有不错的视频学习教程和PDF电子书!
'''
# 背景色
background_color_js = (
    "new echarts.graphic.LinearGradient(0, 0, 0, 1, "
    "[{offset: 0, color: '#c86589'}, {offset: 1, color: '#06a7ff'}], false)"
)

# 线条样式
linestyle_dic = { 'normal': {
                    'width': 4,  
                    'shadowColor': '#696969', 
                    'shadowBlur': 10,  
                    'shadowOffsetY': 10,  
                    'shadowOffsetX': 10,  
                    }
                }
timeline = Timeline(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js),
                                            width='980px',height='600px'))


bj, gz, sh, sz= [], [], [], []
all_max = []
x_data = data_10[data_10['城市'] == '北京']['日'].tolist()
for d_time in range(len(x_data)):
    bj.append(data_10[(data_10['日'] == x_data[d_time]) & (data_10['城市']=='北京')]["最高温度"].values.tolist()[0])
    gz.append(data_10[(data_10['日'] == x_data[d_time]) & (data_10['城市']=='广州')]["最高温度"].values.tolist()[0])
    sh.append(data_10[(data_10['日'] == x_data[d_time]) & (data_10['城市']=='上海')]["最高温度"].values.tolist()[0])
    sz.append(data_10[(data_10['日'] == x_data[d_time]) & (data_10['城市']=='深圳')]["最高温度"].values.tolist()[0])
    
    line = (
        Line(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js),
                                     width='980px',height='600px'))
        .add_xaxis(
            x_data,
                  )
        
        .add_yaxis(
            '北京',
            bj,
            symbol_size=5,
            is_smooth=True,
            is_hover_animation=True,
            label_opts=opts.LabelOpts(is_show=False),
        )
  
        .add_yaxis(
            '广州',
            gz,
            symbol_size=5,
            is_smooth=True,
            is_hover_animation=True,
            label_opts=opts.LabelOpts(is_show=False),
        )
 
        .add_yaxis(
            '上海',
            sh,
            symbol_size=5,
            is_smooth=True,
            is_hover_animation=True,
            label_opts=opts.LabelOpts(is_show=False),
            
        )
 
        .add_yaxis(
            '深圳',
            sz,
            symbol_size=5,
            is_smooth=True,
            is_hover_animation=True,
            label_opts=opts.LabelOpts(is_show=False),
            
        )
        
        .set_series_opts(linestyle_opts=linestyle_dic)
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='北上广深10月份最高气温变化趋势',
                pos_left='center',
                pos_top='2%',
                title_textstyle_opts=opts.TextStyleOpts(color='#DC143C', font_size=20)),
            
            tooltip_opts=opts.TooltipOpts(
                trigger="axis",
                axis_pointer_type="cross",
                background_color="rgba(245, 245, 245, 0.8)",
                border_width=1,
                border_color="#ccc",
                textstyle_opts=opts.TextStyleOpts(color="#000"),
        ),
            xaxis_opts=opts.AxisOpts(
#                 axislabel_opts=opts.LabelOpts(font_size=14, color='red'),
#                 axisline_opts=opts.AxisLineOpts(is_show=True,
#                 linestyle_opts=opts.LineStyleOpts(width=2, color='#DB7093'))
                is_show = False
            ),
                
            
            yaxis_opts=opts.AxisOpts(
                name='最高气温',            
                is_scale=True,
#                 min_= int(min([gz[d_time],sh[d_time],sz[d_time],bj[d_time]])) - 10,
                max_= int(max([gz[d_time],sh[d_time],sz[d_time],bj[d_time]])) + 10,
                name_textstyle_opts=opts.TextStyleOpts(font_size=16,font_weight='bold',color='#5470c6'),
                axislabel_opts=opts.LabelOpts(font_size=13,color='#5470c6'),
                splitline_opts=opts.SplitLineOpts(is_show=True, 
                                                  linestyle_opts=opts.LineStyleOpts(type_='dashed')),
                axisline_opts=opts.AxisLineOpts(is_show=True,
                                        linestyle_opts=opts.LineStyleOpts(width=2, color='#5470c6'))
            ),
            legend_opts=opts.LegendOpts(is_show=True, pos_right='1%', pos_top='2%',
                                        legend_icon='roundRect',orient = 'vertical'),
        ))
    
    timeline.add(line, '{}'.format(x_data[d_time]))

timeline.add_schema(
    play_interval=1000,          # 轮播速度
    is_timeline_show=True,      # 是否显示 timeline 组件
    is_auto_play=True,          # 是否自动播放
    pos_left="0",
    pos_right="0"
)
timeline.render('2.html')

尾语

感谢你观看我的文章呐~本次航班到这里就结束啦 🛬

希望本篇文章有对你带来帮助 🎉,有学习到一点知识~

躲起来的星星🍥也在努力发光,你也要努力加油(让我们一起努力叭)。

最后,宣传一下呀~👇👇👇更多源码、资料、素材、解答、交流皆点击下方名片获取呀👇👇

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1212740.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

jbase实现通用码表

没有通用码表的体系是不完美的,当年我用C#能实现的通用码表,现在在java一样的实现了,通用码表对提高开发效率和降低开发成本的作用巨大,开发可以专注写业务,而不比被太多的维护界面束缚。进而体现在产品竞争力上面&…

Radiology 谈人工智能在放射学领域的10个预测方向 [文献阅读]

人工智能(AI)和信息学正在改变放射学。十年前,没有哪个专家会预测到今天放射人工智能行业的蓬勃发展,100多家人工智能公司和近400种放射人工智能算法得到了美国食品和药物管理局(FDA)的批准。 不到一年前,即使是最精明的预言家也不会相信这些…

Figma插件合集大放送,效果嘎嘎棒!

近日,Figma被Adobe收购的消息在设计领域引起了极大的轰动。作为海外知名的设计工具,Figma对设计圈的影响不容小觑。Figma插件是设计师选择Figma的重要原因。然而,设计软件是一个快速更新和迭代的行业。在关注海外设计软件的同时,也…

python中的字符串转字节码

res int.from_bytes(hello.encode(), byteorderlittle)res的结果为478560413032,这个结果怎么计算得到的呢? 将hello的每个字母的ascii码从右往左排列,拼接起来转成十进制就是res的结果。 拼接的结果为:011011110110110001101100…

JWT登录认证(1登录)

JwtUtil package com.lin.springboot01.utils; import com.auth0.jwt.JWT; import com.auth0.jwt.algorithms.Algorithm; import java.util.Date; import java.util.Map;public class JwtUtil {private static final String KEY "liner2332";//接受业务数据&#xf…

【Mycat2实战】二、Mycat安装部署

1. Mycat下载 Mycat官网下载地址,点击直接前往:http://www.mycat.org.cn/ Mycat 有提供编译好的安装包,支持 windows、Linux、Mac、 Solaris 等系统上安装与运行。 本文及后续系列的文章都是使用Linux的系统进行操作。 这里我们选择使用文…

Leetcode周赛371补题(3 / 3)

目录 1、找出强数对的最大异或值 - 暴力 2、高访问员工 - 哈希表 模拟 3、最大化数组末位元素的最少操作次数 - 思维 贪心 1、找出强数对的最大异或值 - 暴力 找出强数对的最大异或值 I class Solution {public int maximumStrongPairXor(int[] a) {int na.length,max0;…

Linux 小程序-进度条

1.进度条准备知识 1.1回车与换行 以前的键盘会有一个这样的按键 ,这个键就是回车与换行。 回车:从当前行回退到当前行的起始位置。 换行:从当前行切换到下一行的该位置。 有了以上的认识我们可以写出一个简单的倒计时代码: 注意&a…

如何掌握项目管理的5个阶段?

项目管理协会(PMI)创建了一个五步项目管理流程,即从启动、规划、执行、监控到结束,为项目经理更好地管理项目提供了现成的基础。如果你正为范围蔓延、返工或项目总体混乱而苦恼,那么遵循项目管理的五个阶段&#xff0c…

【装包拆包----泛型】

文章目录 装箱和拆箱泛型创建一个泛型数组泛型的上界泛型方法 装箱和拆箱 装箱: 把基本数据类型给到引用数据类型 public static void main(String[] args) {//自动装包//第一种装包Integer c 12;//第二种装包int a 7;Integer b a;//显示装包Integer aa Intege…

什么是自动化测试框架?

无论是在自动化测试实践,还是日常交流中,经常听到一个词:框架。之前学习自动化测试的过程中,一直对“框架”这个词知其然不知其所以然。 最近看了很多自动化相关的资料,加上自己的一些实践,算是对“框架”…

应用协议安全:Rsync-common 未授权访问.

应用协议安全:Rsync-common 未授权访问. Rsync 是 Linux 下一款数据备份工具,支持通过 rsync 协议、ssh 协议进行远程文件传输。其中 rsync 协议默认监听 873 端口,如果目标开启了 rsync 服务,并且没有配置 ACL 或访问密码&#…

Node.js 安装配置

文章目录 安装检测Node是否可用 安装 首先我们需要从官网下载Node安装包:Node.Js中文网,下载后双击安装没有什么特殊的地方,安装路径默认是C盘,不想安装C盘的话可以选择一下其他的盘符。安装完成以后可以不用配置环境变量,Node安装已经自动给…

【算法总结】归并排序专题(刷题有感)

思考 一定要注意归并排序的含义,思考归并的意义。 主要分为两个步骤: 拆分 每次对半分(mid l r >> 1)输入:raw整块,输出:raw左块 raw右块 合并 每次都要对raw左块、 raw右块按照某种规则进行合并输入&#xf…

计算机基础知识53

模板之过滤器 # HTML被直接硬编码在 Python代码之中,Django的 模板系统(Template System) # 过滤器给我们提供的有六十多个,但是我们只需要掌握10个以内即可 过滤器名称就是函数名 # 语法:{{ obj|filter__name:param }} 变量名字…

多个Obj模型合并

MergeObj(合并Obj模型) 1 概述 由于项目原因,需要下载谷歌地图上的模型,关于谷歌模型下载的,见我的CSDN博客. 由于下载谷歌地图上的数据,会分多个模块下载。下载完成后,怎么合并,在…

电脑检测温度软件有哪些?

环境: Win10 专业版 问题描述: 电脑检测温度软件有哪些? 解决方案: 有很多电脑检测温度的软件可供选择,以下是一些常用的电脑温度监测工具: HWMonitor:一款免费的硬件监控软件&#xff0…

快速生成力扣链表题的链表,实现快速调试

关于力扣链表题需要本地调试创建链表的情况 我们在练习链表题,力扣官方需要会员,我们又不想开会员,想在本地调试给你们提供的代码 声明:本人也是参考的别人的代码,给你们提供不同语言生成链表 参考链接: 参…

正则表达式入门教程

一、本文目标 让你明白正则表达式是什么,并对它有一些基本的了解,让你可以在自己的程序或网页里使用它。 二、如何使用本教程 文本格式约定:专业术语 元字符/语法格式 正则表达式 正则表达式中的一部分(用于分析) 对其进行匹配的源字符串 …

01背包 D. Make Them Equal

Problem - D - Codeforces 输出值不超过k次操作后的最大值。 看b数组的大小,b数组元素是小于1000的正整数。从1到bi如果可以,那么最多是大概10次的,因为是指数递增的,例如:1 -> 2 -> 4 -> 8 -> 16 -> …