python基于图卷积神经网络GCN模型开发构建文本数据分类模型(以论文领域数据为例)

news2025/1/19 23:06:50

GCN(Graph Convolutional Network)图卷积神经网络是一种用于处理图数据的深度学习模型。它是基于图结构的卷积操作进行信息传递和特征学习的。

GCN模型的核心思想是通过利用邻居节点的特征来更新中心节点的表示。它通过迭代地聚集邻居节点的信息,逐渐将全局的图结构信息融入到节点的特征表示中。

具体来说,GCN模型的计算过程如下:

  1. 初始化节点的特征表示,通常是一个节点特征矩阵。
  2. 迭代地进行图卷积操作,每一次迭代都更新节点的特征表示。在每次迭代中,节点会聚集其邻居节点的特征,并将聚集后的特征进行转换和更新。
  3. 重复进行多次迭代,直到节点的特征表示达到稳定状态或达到预定的迭代轮数。

GCN模型的优点包括:

  1. 能够处理不定长的图结构数据,适用于各种类型的图数据,如社交网络、推荐系统、生物信息学等领域。
  2. 能够捕捉节点之间的关系和全局的图结构信息,从而提高节点特征的表示能力。
  3. 可以进行端到端的学习,不需要手工设计特征。

GCN模型的应用包括节点分类、图分类、链接预测等任务。

下面是实例代码实现:

import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers



class GraphConvLayer(layers.Layer):
    def __init__(self, output_dim):
        super(GraphConvLayer, self).__init__()
        self.output_dim = output_dim

    def build(self, input_shape):
        self.kernel = self.add_weight(
            name="kernel",
            shape=(input_shape[1], self.output_dim),
            initializer="glorot_uniform",
            trainable=True,
        )

    def call(self, inputs, adjacency_matrix):
        adjacency_matrix = tf.cast(adjacency_matrix, tf.float32)
        output = tf.matmul(adjacency_matrix, inputs)
        output = tf.matmul(output, self.kernel)
        return tf.nn.relu(output)



class GCNModel(tf.keras.Model):
    def __init__(self, num_classes):
        super(GCNModel, self).__init__()
        self.graph_conv1 = GraphConvLayer(64)
        self.graph_conv2 = GraphConvLayer(num_classes)

    def call(self, inputs, adjacency_matrix):
        x = self.graph_conv1(inputs, adjacency_matrix)
        x = self.graph_conv2(x, adjacency_matrix)
        return tf.nn.softmax(x)



model = GCNModel(num_classes)
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.01),
              loss=tf.keras.losses.CategoricalCrossentropy(),
              metrics=['accuracy'])
model.fit(x_train, y_train, epochs=10, batch_size=32)

这里本文的核心目的是想要初始尝试基于GCN模型来开发构建文本分类模型,这里选择的是一个论文相关的数据集,如下所示:

节点引用关系如下:

【论文内容数据】如下:

可以看到:这里论文内容数据已经是记过词袋模型处理过后的向量数据集了,可以直接使用。

共分为以下七个类别,如下所示:

案例型

遗传算法

神经网络

概率论

强化学习

规则学习

理论

接下来我们来具体实现,首先加载数据集,如下所示:

def load4Split():
    """
    加载数据,随机划分
    """
    X, A, y = load_data(dataset='cora')
    print("X_shape: ", X.shape)
    print("A_shape: ", A.shape)
    print("y_shape: ", y.shape)
    y_train, y_val, y_test, idx_train, idx_val, idx_test, train_mask = get_splits(y)
    return y_train, y_val, y_test, idx_train, idx_val, idx_test, train_mask, X, A, y


y_train, y_val, y_test, idx_train, idx_val, idx_test, train_mask, X, A, y = load4Split()

之后对数据进行缩放处理,构建graph,如下所示:

X /= X.sum(1).reshape(-1, 1)
print('Using local pooling filters...')
A_ = preprocess_adj(A, SYM_NORM)
support = 1
graph = [X, A_]
G = [Input(shape=(None, None), batch_shape=(None, None), sparse=True)]
print("G: ", G)
print("graph: ", graph)

接着初始化搭建模型,如下所示:

X_in = Input(shape=(X.shape[1],))
H = Dropout(0.5)(X_in)
H = GraphConvolution(16, support, activation='relu', kernel_regularizer=l2(5e-4))([H]+G)
H = Dropout(0.5)(H)
Y = GraphConvolution(y.shape[1], support, activation='softmax')([H]+G)
# 编译
model = Model(inputs=[X_in]+G, outputs=Y)
model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.01))

完成模型构建后就可以开始模型的训练了,如下所示:

for epoch in range(1, NB_EPOCH+1):
    # Log wall-clock time
    t = time.time()
    # Single training iteration (we mask nodes without labels for loss calculation)
    model.fit(graph, y_train, sample_weight=train_mask,
              batch_size=A.shape[0], epochs=1, shuffle=False, verbose=0)
    # Predict on full dataset
    preds = model.predict(graph, batch_size=A.shape[0])
    # Train / validation scores
    train_val_loss, train_val_acc = evaluate_preds(preds, [y_train, y_val],
                                                   [idx_train, idx_val])
    print("Epoch: {:04d}".format(epoch),
          "train_loss= {:.4f}".format(train_val_loss[0]),
          "train_acc= {:.4f}".format(train_val_acc[0]),
          "val_loss= {:.4f}".format(train_val_loss[1]),
          "val_acc= {:.4f}".format(train_val_acc[1]),
          "time= {:.4f}".format(time.time() - t))
    train_loss_list.append(train_val_loss[0])
    val_loss_list.append(train_val_loss[1])
    train_acc_list.append(train_val_acc[0])
    val_acc_list.append(train_val_acc[1])
    # Early stopping
    if train_val_loss[1] < best_val_loss:
        best_val_loss = train_val_loss[1]
        wait = 0
    else:
        if wait >= PATIENCE:
            print('Epoch {}: early stopping'.format(epoch))
            break
        wait += 1

最后对模型进行测试评估与可视化分析,如下所示:

# 测试
test_loss, test_acc = evaluate_preds(preds, [y_test], [idx_test])
print("Test set results:",
      "loss= {:.4f}".format(test_loss[0]),
      "accuracy= {:.4f}".format(test_acc[0]))


# 可视化
plt.clf()
plt.figure(figsize=(10, 6))
plt.plot(train_loss_list,c='blue',label="train loss cruve")
plt.plot(val_loss_list,c='red',label="val loss cruve")
plt.plot(train_acc_list,c='green',label="train acc cruve")
plt.plot(val_acc_list,c='yellow',label="val acc cruve")
plt.legend()
plt.title("GCN Model Train Details")
plt.savefig("gcn_train.png")

训练详情日志信息如下所示:

Epoch: 0001 train_loss= 1.9328 train_acc= 0.2000 val_loss= 1.9372 val_acc= 0.1567 time= 0.3660
Epoch: 0002 train_loss= 1.9194 train_acc= 0.2000 val_loss= 1.9261 val_acc= 0.1567 time= 0.0680
Epoch: 0003 train_loss= 1.9047 train_acc= 0.2000 val_loss= 1.9152 val_acc= 0.1567 time= 0.0720
Epoch: 0004 train_loss= 1.8888 train_acc= 0.2000 val_loss= 1.9036 val_acc= 0.1567 time= 0.0710
Epoch: 0005 train_loss= 1.8731 train_acc= 0.2000 val_loss= 1.8922 val_acc= 0.1567 time= 0.0660
Epoch: 0006 train_loss= 1.8571 train_acc= 0.2000 val_loss= 1.8802 val_acc= 0.1567 time= 0.0660
Epoch: 0007 train_loss= 1.8408 train_acc= 0.2000 val_loss= 1.8681 val_acc= 0.1567 time= 0.0630
Epoch: 0008 train_loss= 1.8246 train_acc= 0.2000 val_loss= 1.8557 val_acc= 0.1567 time= 0.0600
Epoch: 0009 train_loss= 1.8084 train_acc= 0.2000 val_loss= 1.8434 val_acc= 0.1567 time= 0.0670
Epoch: 0010 train_loss= 1.7926 train_acc= 0.2000 val_loss= 1.8316 val_acc= 0.1567 time= 0.0630
Epoch: 0011 train_loss= 1.7773 train_acc= 0.2000 val_loss= 1.8200 val_acc= 0.1567 time= 0.0640
Epoch: 0012 train_loss= 1.7624 train_acc= 0.2000 val_loss= 1.8089 val_acc= 0.1567 time= 0.0740
Epoch: 0013 train_loss= 1.7482 train_acc= 0.2286 val_loss= 1.7985 val_acc= 0.1733 time= 0.0670
Epoch: 0014 train_loss= 1.7347 train_acc= 0.2714 val_loss= 1.7886 val_acc= 0.1867 time= 0.0680
Epoch: 0015 train_loss= 1.7218 train_acc= 0.3214 val_loss= 1.7791 val_acc= 0.2400 time= 0.0660
Epoch: 0016 train_loss= 1.7094 train_acc= 0.3857 val_loss= 1.7698 val_acc= 0.3300 time= 0.0700
Epoch: 0017 train_loss= 1.6977 train_acc= 0.4429 val_loss= 1.7605 val_acc= 0.3900 time= 0.0750
Epoch: 0018 train_loss= 1.6863 train_acc= 0.4643 val_loss= 1.7515 val_acc= 0.4267 time= 0.0740
Epoch: 0019 train_loss= 1.6754 train_acc= 0.4857 val_loss= 1.7429 val_acc= 0.4533 time= 0.0700
Epoch: 0020 train_loss= 1.6648 train_acc= 0.4929 val_loss= 1.7344 val_acc= 0.4700 time= 0.0650
Epoch: 0021 train_loss= 1.6543 train_acc= 0.4857 val_loss= 1.7260 val_acc= 0.4833 time= 0.0640
Epoch: 0022 train_loss= 1.6441 train_acc= 0.4714 val_loss= 1.7176 val_acc= 0.4567 time= 0.0630
Epoch: 0023 train_loss= 1.6339 train_acc= 0.4571 val_loss= 1.7094 val_acc= 0.4367 time= 0.0630
Epoch: 0024 train_loss= 1.6235 train_acc= 0.4500 val_loss= 1.7015 val_acc= 0.4167 time= 0.0630
Epoch: 0025 train_loss= 1.6128 train_acc= 0.4500 val_loss= 1.6939 val_acc= 0.4167 time= 0.0630
Epoch: 0026 train_loss= 1.6018 train_acc= 0.4500 val_loss= 1.6864 val_acc= 0.4167 time= 0.0640
Epoch: 0027 train_loss= 1.5905 train_acc= 0.4500 val_loss= 1.6792 val_acc= 0.4167 time= 0.0660
Epoch: 0028 train_loss= 1.5791 train_acc= 0.4571 val_loss= 1.6719 val_acc= 0.4167 time= 0.0650
Epoch: 0029 train_loss= 1.5675 train_acc= 0.4571 val_loss= 1.6646 val_acc= 0.4333 time= 0.0740
Epoch: 0030 train_loss= 1.5558 train_acc= 0.4643 val_loss= 1.6571 val_acc= 0.4367 time= 0.0670
Epoch: 0031 train_loss= 1.5440 train_acc= 0.4643 val_loss= 1.6499 val_acc= 0.4400 time= 0.0670
Epoch: 0032 train_loss= 1.5322 train_acc= 0.4929 val_loss= 1.6425 val_acc= 0.4500 time= 0.0670
Epoch: 0033 train_loss= 1.5204 train_acc= 0.4929 val_loss= 1.6350 val_acc= 0.4633 time= 0.0699
Epoch: 0034 train_loss= 1.5085 train_acc= 0.5000 val_loss= 1.6273 val_acc= 0.4667 time= 0.0750
Epoch: 0035 train_loss= 1.4967 train_acc= 0.5071 val_loss= 1.6194 val_acc= 0.4700 time= 0.0650
Epoch: 0036 train_loss= 1.4847 train_acc= 0.5071 val_loss= 1.6114 val_acc= 0.4900 time= 0.0610
Epoch: 0037 train_loss= 1.4726 train_acc= 0.5071 val_loss= 1.6031 val_acc= 0.5000 time= 0.0640
Epoch: 0038 train_loss= 1.4603 train_acc= 0.5214 val_loss= 1.5946 val_acc= 0.4933 time= 0.0610
Epoch: 0039 train_loss= 1.4480 train_acc= 0.5286 val_loss= 1.5856 val_acc= 0.4933 time= 0.0630
Epoch: 0040 train_loss= 1.4357 train_acc= 0.5357 val_loss= 1.5767 val_acc= 0.4933 time= 0.0630
Epoch: 0041 train_loss= 1.4235 train_acc= 0.5357 val_loss= 1.5677 val_acc= 0.4967 time= 0.0650
Epoch: 0042 train_loss= 1.4112 train_acc= 0.5429 val_loss= 1.5586 val_acc= 0.5033 time= 0.0680
Epoch: 0043 train_loss= 1.3989 train_acc= 0.5500 val_loss= 1.5496 val_acc= 0.5100 time= 0.0650
Epoch: 0044 train_loss= 1.3866 train_acc= 0.5500 val_loss= 1.5406 val_acc= 0.5033 time= 0.0670
Epoch: 0045 train_loss= 1.3742 train_acc= 0.5643 val_loss= 1.5317 val_acc= 0.5033 time= 0.0680
Epoch: 0046 train_loss= 1.3619 train_acc= 0.5786 val_loss= 1.5228 val_acc= 0.5100 time= 0.0660
Epoch: 0047 train_loss= 1.3497 train_acc= 0.5929 val_loss= 1.5140 val_acc= 0.5133 time= 0.0670
Epoch: 0048 train_loss= 1.3376 train_acc= 0.6071 val_loss= 1.5056 val_acc= 0.5267 time= 0.0730
Epoch: 0049 train_loss= 1.3258 train_acc= 0.6143 val_loss= 1.4973 val_acc= 0.5333 time= 0.0720
Epoch: 0050 train_loss= 1.3140 train_acc= 0.6286 val_loss= 1.4887 val_acc= 0.5400 time= 0.0655
Epoch: 0051 train_loss= 1.3024 train_acc= 0.6286 val_loss= 1.4800 val_acc= 0.5433 time= 0.0610
Epoch: 0052 train_loss= 1.2908 train_acc= 0.6357 val_loss= 1.4714 val_acc= 0.5467 time= 0.0630
Epoch: 0053 train_loss= 1.2790 train_acc= 0.6500 val_loss= 1.4623 val_acc= 0.5500 time= 0.0640
Epoch: 0054 train_loss= 1.2672 train_acc= 0.6571 val_loss= 1.4529 val_acc= 0.5533 time= 0.0620
Epoch: 0055 train_loss= 1.2556 train_acc= 0.6571 val_loss= 1.4435 val_acc= 0.5567 time= 0.0640
Epoch: 0056 train_loss= 1.2441 train_acc= 0.6714 val_loss= 1.4342 val_acc= 0.5633 time= 0.0640
Epoch: 0057 train_loss= 1.2325 train_acc= 0.6786 val_loss= 1.4251 val_acc= 0.5700 time= 0.0740
Epoch: 0058 train_loss= 1.2208 train_acc= 0.7143 val_loss= 1.4162 val_acc= 0.5833 time= 0.0670
Epoch: 0059 train_loss= 1.2093 train_acc= 0.7286 val_loss= 1.4074 val_acc= 0.6033 time= 0.0650
Epoch: 0060 train_loss= 1.1977 train_acc= 0.7429 val_loss= 1.3988 val_acc= 0.6100 time= 0.0670
Epoch: 0061 train_loss= 1.1861 train_acc= 0.7500 val_loss= 1.3904 val_acc= 0.6167 time= 0.0680
Epoch: 0062 train_loss= 1.1745 train_acc= 0.7714 val_loss= 1.3818 val_acc= 0.6167 time= 0.0670
Epoch: 0063 train_loss= 1.1633 train_acc= 0.7786 val_loss= 1.3735 val_acc= 0.6233 time= 0.0690
Epoch: 0064 train_loss= 1.1524 train_acc= 0.7857 val_loss= 1.3652 val_acc= 0.6333 time= 0.0724
Epoch: 0065 train_loss= 1.1414 train_acc= 0.7929 val_loss= 1.3566 val_acc= 0.6400 time= 0.0760
Epoch: 0066 train_loss= 1.1304 train_acc= 0.7929 val_loss= 1.3477 val_acc= 0.6400 time= 0.0660
Epoch: 0067 train_loss= 1.1195 train_acc= 0.8000 val_loss= 1.3389 val_acc= 0.6433 time= 0.0640
Epoch: 0068 train_loss= 1.1086 train_acc= 0.8000 val_loss= 1.3298 val_acc= 0.6467 time= 0.0630
Epoch: 0069 train_loss= 1.0978 train_acc= 0.8071 val_loss= 1.3208 val_acc= 0.6500 time= 0.0650
Epoch: 0070 train_loss= 1.0873 train_acc= 0.8071 val_loss= 1.3121 val_acc= 0.6567 time= 0.0620
Epoch: 0071 train_loss= 1.0767 train_acc= 0.8071 val_loss= 1.3036 val_acc= 0.6600 time= 0.0620
Epoch: 0072 train_loss= 1.0662 train_acc= 0.8071 val_loss= 1.2952 val_acc= 0.6633 time= 0.0650
Epoch: 0073 train_loss= 1.0556 train_acc= 0.8071 val_loss= 1.2866 val_acc= 0.6733 time= 0.0660
Epoch: 0074 train_loss= 1.0452 train_acc= 0.8143 val_loss= 1.2783 val_acc= 0.6800 time= 0.0665
Epoch: 0075 train_loss= 1.0348 train_acc= 0.8143 val_loss= 1.2703 val_acc= 0.6800 time= 0.0670
Epoch: 0076 train_loss= 1.0245 train_acc= 0.8143 val_loss= 1.2625 val_acc= 0.6900 time= 0.0670
Epoch: 0077 train_loss= 1.0144 train_acc= 0.8286 val_loss= 1.2548 val_acc= 0.6967 time= 0.0670
Epoch: 0078 train_loss= 1.0043 train_acc= 0.8286 val_loss= 1.2469 val_acc= 0.7000 time= 0.0690
Epoch: 0079 train_loss= 0.9946 train_acc= 0.8286 val_loss= 1.2391 val_acc= 0.7033 time= 0.0710
Epoch: 0080 train_loss= 0.9852 train_acc= 0.8357 val_loss= 1.2309 val_acc= 0.7033 time= 0.0680
Epoch: 0081 train_loss= 0.9764 train_acc= 0.8429 val_loss= 1.2230 val_acc= 0.7100 time= 0.0625
Epoch: 0082 train_loss= 0.9676 train_acc= 0.8429 val_loss= 1.2155 val_acc= 0.7133 time= 0.0620
Epoch: 0083 train_loss= 0.9585 train_acc= 0.8429 val_loss= 1.2086 val_acc= 0.7133 time= 0.0640
Epoch: 0084 train_loss= 0.9491 train_acc= 0.8571 val_loss= 1.2017 val_acc= 0.7200 time= 0.0610
Epoch: 0085 train_loss= 0.9400 train_acc= 0.8571 val_loss= 1.1952 val_acc= 0.7267 time= 0.0620
Epoch: 0086 train_loss= 0.9314 train_acc= 0.8643 val_loss= 1.1888 val_acc= 0.7300 time= 0.0612
Epoch: 0087 train_loss= 0.9229 train_acc= 0.8643 val_loss= 1.1826 val_acc= 0.7400 time= 0.0650
Epoch: 0088 train_loss= 0.9149 train_acc= 0.8714 val_loss= 1.1767 val_acc= 0.7467 time= 0.0670
Epoch: 0089 train_loss= 0.9069 train_acc= 0.8714 val_loss= 1.1703 val_acc= 0.7500 time= 0.0650
Epoch: 0090 train_loss= 0.8989 train_acc= 0.8786 val_loss= 1.1639 val_acc= 0.7533 time= 0.0670
Epoch: 0091 train_loss= 0.8907 train_acc= 0.8786 val_loss= 1.1571 val_acc= 0.7533 time= 0.0670
Epoch: 0092 train_loss= 0.8828 train_acc= 0.8786 val_loss= 1.1506 val_acc= 0.7533 time= 0.0660
Epoch: 0093 train_loss= 0.8749 train_acc= 0.8786 val_loss= 1.1444 val_acc= 0.7567 time= 0.0680
Epoch: 0094 train_loss= 0.8671 train_acc= 0.8786 val_loss= 1.1380 val_acc= 0.7600 time= 0.0700
Epoch: 0095 train_loss= 0.8591 train_acc= 0.8786 val_loss= 1.1309 val_acc= 0.7600 time= 0.0680
Epoch: 0096 train_loss= 0.8506 train_acc= 0.8786 val_loss= 1.1233 val_acc= 0.7667 time= 0.0640
Epoch: 0097 train_loss= 0.8425 train_acc= 0.8786 val_loss= 1.1160 val_acc= 0.7633 time= 0.0620
Epoch: 0098 train_loss= 0.8349 train_acc= 0.8786 val_loss= 1.1093 val_acc= 0.7633 time= 0.0630
Epoch: 0099 train_loss= 0.8276 train_acc= 0.8929 val_loss= 1.1032 val_acc= 0.7633 time= 0.0650
Epoch: 0100 train_loss= 0.8205 train_acc= 0.8929 val_loss= 1.0970 val_acc= 0.7600 time= 0.0640
Epoch: 0101 train_loss= 0.8130 train_acc= 0.8929 val_loss= 1.0907 val_acc= 0.7667 time= 0.0618
Epoch: 0102 train_loss= 0.8055 train_acc= 0.8929 val_loss= 1.0851 val_acc= 0.7667 time= 0.0640
Epoch: 0103 train_loss= 0.7983 train_acc= 0.8929 val_loss= 1.0800 val_acc= 0.7667 time= 0.0670
Epoch: 0104 train_loss= 0.7916 train_acc= 0.8929 val_loss= 1.0757 val_acc= 0.7667 time= 0.0680
Epoch: 0105 train_loss= 0.7855 train_acc= 0.9000 val_loss= 1.0716 val_acc= 0.7700 time= 0.0679
Epoch: 0106 train_loss= 0.7794 train_acc= 0.8857 val_loss= 1.0675 val_acc= 0.7700 time= 0.0660
Epoch: 0107 train_loss= 0.7734 train_acc= 0.8857 val_loss= 1.0626 val_acc= 0.7700 time= 0.0660
Epoch: 0108 train_loss= 0.7670 train_acc= 0.8857 val_loss= 1.0566 val_acc= 0.7633 time= 0.0690
Epoch: 0109 train_loss= 0.7607 train_acc= 0.8857 val_loss= 1.0501 val_acc= 0.7600 time= 0.0709
Epoch: 0110 train_loss= 0.7549 train_acc= 0.8857 val_loss= 1.0439 val_acc= 0.7600 time= 0.0685
Epoch: 0111 train_loss= 0.7496 train_acc= 0.8857 val_loss= 1.0380 val_acc= 0.7667 time= 0.0650
Epoch: 0112 train_loss= 0.7448 train_acc= 0.8786 val_loss= 1.0327 val_acc= 0.7667 time= 0.0620
Epoch: 0113 train_loss= 0.7394 train_acc= 0.8786 val_loss= 1.0281 val_acc= 0.7667 time= 0.0650
Epoch: 0114 train_loss= 0.7335 train_acc= 0.8929 val_loss= 1.0236 val_acc= 0.7700 time= 0.0630
Epoch: 0115 train_loss= 0.7276 train_acc= 0.8929 val_loss= 1.0194 val_acc= 0.7733 time= 0.0630
Epoch: 0116 train_loss= 0.7218 train_acc= 0.8929 val_loss= 1.0156 val_acc= 0.7767 time= 0.0651
Epoch: 0117 train_loss= 0.7161 train_acc= 0.9071 val_loss= 1.0120 val_acc= 0.7800 time= 0.0650
Epoch: 0118 train_loss= 0.7108 train_acc= 0.9143 val_loss= 1.0086 val_acc= 0.7767 time= 0.0650
Epoch: 0119 train_loss= 0.7054 train_acc= 0.9143 val_loss= 1.0041 val_acc= 0.7767 time= 0.0660
Epoch: 0120 train_loss= 0.6999 train_acc= 0.9143 val_loss= 0.9987 val_acc= 0.7767 time= 0.0660
Epoch: 0121 train_loss= 0.6949 train_acc= 0.9071 val_loss= 0.9939 val_acc= 0.7767 time= 0.0670
Epoch: 0122 train_loss= 0.6907 train_acc= 0.9000 val_loss= 0.9896 val_acc= 0.7733 time= 0.0660
Epoch: 0123 train_loss= 0.6869 train_acc= 0.9000 val_loss= 0.9861 val_acc= 0.7733 time= 0.0660
Epoch: 0124 train_loss= 0.6825 train_acc= 0.9000 val_loss= 0.9834 val_acc= 0.7667 time= 0.0710
Epoch: 0125 train_loss= 0.6777 train_acc= 0.9071 val_loss= 0.9810 val_acc= 0.7767 time= 0.0700
Epoch: 0126 train_loss= 0.6730 train_acc= 0.9071 val_loss= 0.9786 val_acc= 0.7733 time= 0.0650
Epoch: 0127 train_loss= 0.6682 train_acc= 0.9071 val_loss= 0.9763 val_acc= 0.7833 time= 0.0630
Epoch: 0128 train_loss= 0.6634 train_acc= 0.9214 val_loss= 0.9737 val_acc= 0.7867 time= 0.0620
Epoch: 0129 train_loss= 0.6587 train_acc= 0.9214 val_loss= 0.9705 val_acc= 0.7867 time= 0.0620
Epoch: 0130 train_loss= 0.6542 train_acc= 0.9286 val_loss= 0.9672 val_acc= 0.7833 time= 0.0640
Epoch: 0131 train_loss= 0.6493 train_acc= 0.9286 val_loss= 0.9628 val_acc= 0.7833 time= 0.0630
Epoch: 0132 train_loss= 0.6442 train_acc= 0.9357 val_loss= 0.9570 val_acc= 0.7833 time= 0.0650
Epoch: 0133 train_loss= 0.6396 train_acc= 0.9357 val_loss= 0.9516 val_acc= 0.7900 time= 0.0680
Epoch: 0134 train_loss= 0.6360 train_acc= 0.9357 val_loss= 0.9472 val_acc= 0.7833 time= 0.0650
Epoch: 0135 train_loss= 0.6334 train_acc= 0.9357 val_loss= 0.9440 val_acc= 0.7833 time= 0.0670
Epoch: 0136 train_loss= 0.6308 train_acc= 0.9357 val_loss= 0.9418 val_acc= 0.7833 time= 0.0650
Epoch: 0137 train_loss= 0.6271 train_acc= 0.9357 val_loss= 0.9392 val_acc= 0.7833 time= 0.0665
Epoch: 0138 train_loss= 0.6227 train_acc= 0.9357 val_loss= 0.9368 val_acc= 0.7867 time= 0.0683
Epoch: 0139 train_loss= 0.6180 train_acc= 0.9357 val_loss= 0.9344 val_acc= 0.7900 time= 0.0730
Epoch: 0140 train_loss= 0.6140 train_acc= 0.9357 val_loss= 0.9323 val_acc= 0.7933 time= 0.0710
Epoch: 0141 train_loss= 0.6106 train_acc= 0.9357 val_loss= 0.9309 val_acc= 0.7933 time= 0.0645
Epoch: 0142 train_loss= 0.6072 train_acc= 0.9286 val_loss= 0.9290 val_acc= 0.7900 time= 0.0620
Epoch: 0143 train_loss= 0.6037 train_acc= 0.9286 val_loss= 0.9270 val_acc= 0.7933 time= 0.0630
Epoch: 0144 train_loss= 0.6000 train_acc= 0.9357 val_loss= 0.9244 val_acc= 0.7933 time= 0.0630
Epoch: 0145 train_loss= 0.5961 train_acc= 0.9357 val_loss= 0.9211 val_acc= 0.7933 time= 0.0629
Epoch: 0146 train_loss= 0.5924 train_acc= 0.9357 val_loss= 0.9179 val_acc= 0.7933 time= 0.0650
Epoch: 0147 train_loss= 0.5885 train_acc= 0.9357 val_loss= 0.9149 val_acc= 0.7933 time= 0.0640
Epoch: 0148 train_loss= 0.5851 train_acc= 0.9357 val_loss= 0.9112 val_acc= 0.7933 time= 0.0670
Epoch: 0149 train_loss= 0.5821 train_acc= 0.9357 val_loss= 0.9079 val_acc= 0.7933 time= 0.0700
Epoch: 0150 train_loss= 0.5790 train_acc= 0.9357 val_loss= 0.9048 val_acc= 0.7933 time= 0.0675
Epoch: 0151 train_loss= 0.5761 train_acc= 0.9357 val_loss= 0.9016 val_acc= 0.7967 time= 0.0660
Epoch: 0152 train_loss= 0.5732 train_acc= 0.9357 val_loss= 0.8985 val_acc= 0.8000 time= 0.0670
Epoch: 0153 train_loss= 0.5703 train_acc= 0.9357 val_loss= 0.8958 val_acc= 0.8000 time= 0.0670
Epoch: 0154 train_loss= 0.5672 train_acc= 0.9357 val_loss= 0.8928 val_acc= 0.8000 time= 0.0720
Epoch: 0155 train_loss= 0.5640 train_acc= 0.9357 val_loss= 0.8896 val_acc= 0.7967 time= 0.0700
Epoch: 0156 train_loss= 0.5606 train_acc= 0.9357 val_loss= 0.8863 val_acc= 0.7967 time= 0.0630
Epoch: 0157 train_loss= 0.5575 train_acc= 0.9357 val_loss= 0.8832 val_acc= 0.7967 time= 0.0631
Epoch: 0158 train_loss= 0.5545 train_acc= 0.9357 val_loss= 0.8805 val_acc= 0.8000 time= 0.0640
Epoch: 0159 train_loss= 0.5514 train_acc= 0.9357 val_loss= 0.8785 val_acc= 0.7933 time= 0.0620
Epoch: 0160 train_loss= 0.5489 train_acc= 0.9357 val_loss= 0.8764 val_acc= 0.7933 time= 0.0720
Epoch: 0161 train_loss= 0.5466 train_acc= 0.9357 val_loss= 0.8747 val_acc= 0.7933 time= 0.0640
Epoch: 0162 train_loss= 0.5444 train_acc= 0.9357 val_loss= 0.8731 val_acc= 0.7933 time= 0.0640
Epoch: 0163 train_loss= 0.5422 train_acc= 0.9429 val_loss= 0.8726 val_acc= 0.7933 time= 0.0680
Epoch: 0164 train_loss= 0.5400 train_acc= 0.9429 val_loss= 0.8723 val_acc= 0.7967 time= 0.0670
Epoch: 0165 train_loss= 0.5384 train_acc= 0.9429 val_loss= 0.8730 val_acc= 0.7933 time= 0.0660
Epoch: 0166 train_loss= 0.5367 train_acc= 0.9429 val_loss= 0.8725 val_acc= 0.7933 time= 0.0680
Epoch: 0167 train_loss= 0.5349 train_acc= 0.9429 val_loss= 0.8712 val_acc= 0.7967 time= 0.0670
Epoch: 0168 train_loss= 0.5325 train_acc= 0.9429 val_loss= 0.8685 val_acc= 0.8033 time= 0.0650
Epoch: 0169 train_loss= 0.5293 train_acc= 0.9429 val_loss= 0.8643 val_acc= 0.8067 time= 0.0720
Epoch: 0170 train_loss= 0.5260 train_acc= 0.9429 val_loss= 0.8596 val_acc= 0.8067 time= 0.0720
Epoch: 0171 train_loss= 0.5230 train_acc= 0.9357 val_loss= 0.8553 val_acc= 0.8033 time= 0.0640
Epoch: 0172 train_loss= 0.5207 train_acc= 0.9357 val_loss= 0.8517 val_acc= 0.8033 time= 0.0620
Epoch: 0173 train_loss= 0.5190 train_acc= 0.9357 val_loss= 0.8492 val_acc= 0.8033 time= 0.0641
Epoch: 0174 train_loss= 0.5164 train_acc= 0.9357 val_loss= 0.8478 val_acc= 0.7933 time= 0.0630
Epoch: 0175 train_loss= 0.5130 train_acc= 0.9357 val_loss= 0.8469 val_acc= 0.7933 time= 0.0630
Epoch: 0176 train_loss= 0.5093 train_acc= 0.9357 val_loss= 0.8468 val_acc= 0.8000 time= 0.0620
Epoch: 0177 train_loss= 0.5059 train_acc= 0.9429 val_loss= 0.8477 val_acc= 0.8000 time= 0.0640
Epoch: 0178 train_loss= 0.5040 train_acc= 0.9429 val_loss= 0.8499 val_acc= 0.7967 time= 0.0695
Epoch: 0179 train_loss= 0.5028 train_acc= 0.9429 val_loss= 0.8526 val_acc= 0.8000 time= 0.0650
Epoch: 0180 train_loss= 0.5020 train_acc= 0.9429 val_loss= 0.8555 val_acc= 0.7900 time= 0.0670
Epoch: 0181 train_loss= 0.5010 train_acc= 0.9429 val_loss= 0.8575 val_acc= 0.7833 time= 0.0680
Epoch: 0182 train_loss= 0.4985 train_acc= 0.9429 val_loss= 0.8560 val_acc= 0.7833 time= 0.0660
Epoch: 0183 train_loss= 0.4940 train_acc= 0.9429 val_loss= 0.8501 val_acc= 0.7867 time= 0.0660
Epoch: 0184 train_loss= 0.4896 train_acc= 0.9429 val_loss= 0.8427 val_acc= 0.8000 time= 0.0700
Epoch: 0185 train_loss= 0.4876 train_acc= 0.9429 val_loss= 0.8374 val_acc= 0.8000 time= 0.0710
Epoch: 0186 train_loss= 0.4878 train_acc= 0.9429 val_loss= 0.8348 val_acc= 0.7900 time= 0.0670
Epoch: 0187 train_loss= 0.4879 train_acc= 0.9429 val_loss= 0.8337 val_acc= 0.7867 time= 0.0630
Epoch: 0188 train_loss= 0.4856 train_acc= 0.9429 val_loss= 0.8316 val_acc= 0.7867 time= 0.0610
Epoch: 0189 train_loss= 0.4830 train_acc= 0.9500 val_loss= 0.8292 val_acc= 0.7867 time= 0.0630
Epoch: 0190 train_loss= 0.4801 train_acc= 0.9500 val_loss= 0.8268 val_acc= 0.7933 time= 0.0660
Epoch: 0191 train_loss= 0.4773 train_acc= 0.9500 val_loss= 0.8251 val_acc= 0.8000 time= 0.0650
Epoch: 0192 train_loss= 0.4746 train_acc= 0.9500 val_loss= 0.8244 val_acc= 0.8033 time= 0.0624
Epoch: 0193 train_loss= 0.4722 train_acc= 0.9571 val_loss= 0.8239 val_acc= 0.8100 time= 0.0670
Epoch: 0194 train_loss= 0.4699 train_acc= 0.9571 val_loss= 0.8241 val_acc= 0.8067 time= 0.0660
Epoch: 0195 train_loss= 0.4678 train_acc= 0.9571 val_loss= 0.8241 val_acc= 0.8033 time= 0.0670
Epoch: 0196 train_loss= 0.4661 train_acc= 0.9571 val_loss= 0.8242 val_acc= 0.8033 time= 0.0660
Epoch: 0197 train_loss= 0.4646 train_acc= 0.9571 val_loss= 0.8242 val_acc= 0.8067 time= 0.0730
Epoch: 0198 train_loss= 0.4632 train_acc= 0.9571 val_loss= 0.8239 val_acc= 0.8033 time= 0.0670
Epoch: 0199 train_loss= 0.4618 train_acc= 0.9571 val_loss= 0.8232 val_acc= 0.8033 time= 0.0710
Epoch: 0200 train_loss= 0.4603 train_acc= 0.9429 val_loss= 0.8214 val_acc= 0.8000 time= 0.0730
Epoch: 0201 train_loss= 0.4587 train_acc= 0.9500 val_loss= 0.8192 val_acc= 0.8000 time= 0.0670
Epoch: 0202 train_loss= 0.4574 train_acc= 0.9500 val_loss= 0.8165 val_acc= 0.8000 time= 0.0640
Epoch: 0203 train_loss= 0.4560 train_acc= 0.9500 val_loss= 0.8137 val_acc= 0.8033 time= 0.0621
Epoch: 0204 train_loss= 0.4537 train_acc= 0.9500 val_loss= 0.8109 val_acc= 0.7933 time= 0.0649
Epoch: 0205 train_loss= 0.4510 train_acc= 0.9500 val_loss= 0.8082 val_acc= 0.7933 time= 0.0620
Epoch: 0206 train_loss= 0.4480 train_acc= 0.9500 val_loss= 0.8063 val_acc= 0.7967 time= 0.0650
Epoch: 0207 train_loss= 0.4456 train_acc= 0.9643 val_loss= 0.8053 val_acc= 0.8033 time= 0.0620
Epoch: 0208 train_loss= 0.4437 train_acc= 0.9643 val_loss= 0.8039 val_acc= 0.8100 time= 0.0660
Epoch: 0209 train_loss= 0.4423 train_acc= 0.9643 val_loss= 0.8031 val_acc= 0.8100 time= 0.0670
Epoch: 0210 train_loss= 0.4408 train_acc= 0.9714 val_loss= 0.8028 val_acc= 0.8167 time= 0.0660
Epoch: 0211 train_loss= 0.4391 train_acc= 0.9714 val_loss= 0.8017 val_acc= 0.8167 time= 0.0680
Epoch: 0212 train_loss= 0.4367 train_acc= 0.9714 val_loss= 0.8003 val_acc= 0.8167 time= 0.0730
Epoch: 0213 train_loss= 0.4343 train_acc= 0.9714 val_loss= 0.7991 val_acc= 0.8167 time= 0.0680
Epoch: 0214 train_loss= 0.4316 train_acc= 0.9714 val_loss= 0.7973 val_acc= 0.8100 time= 0.0690
Epoch: 0215 train_loss= 0.4288 train_acc= 0.9714 val_loss= 0.7951 val_acc= 0.8100 time= 0.0710
Epoch: 0216 train_loss= 0.4266 train_acc= 0.9714 val_loss= 0.7927 val_acc= 0.8100 time= 0.0670
Epoch: 0217 train_loss= 0.4252 train_acc= 0.9643 val_loss= 0.7914 val_acc= 0.8067 time= 0.0620
Epoch: 0218 train_loss= 0.4240 train_acc= 0.9643 val_loss= 0.7896 val_acc= 0.8067 time= 0.0630
Epoch: 0219 train_loss= 0.4229 train_acc= 0.9643 val_loss= 0.7869 val_acc= 0.7967 time= 0.0640
Epoch: 0220 train_loss= 0.4217 train_acc= 0.9643 val_loss= 0.7839 val_acc= 0.8033 time= 0.0710
Epoch: 0221 train_loss= 0.4206 train_acc= 0.9643 val_loss= 0.7818 val_acc= 0.8133 time= 0.0650
Epoch: 0222 train_loss= 0.4194 train_acc= 0.9643 val_loss= 0.7806 val_acc= 0.8167 time= 0.0640
Epoch: 0223 train_loss= 0.4187 train_acc= 0.9786 val_loss= 0.7804 val_acc= 0.8233 time= 0.0660
Epoch: 0224 train_loss= 0.4178 train_acc= 0.9786 val_loss= 0.7806 val_acc= 0.8267 time= 0.0650
Epoch: 0225 train_loss= 0.4168 train_acc= 0.9786 val_loss= 0.7803 val_acc= 0.8233 time= 0.0700
Epoch: 0226 train_loss= 0.4153 train_acc= 0.9786 val_loss= 0.7799 val_acc= 0.8200 time= 0.0670
Epoch: 0227 train_loss= 0.4138 train_acc= 0.9714 val_loss= 0.7798 val_acc= 0.8167 time= 0.0680
Epoch: 0228 train_loss= 0.4126 train_acc= 0.9714 val_loss= 0.7807 val_acc= 0.8133 time= 0.0660
Epoch: 0229 train_loss= 0.4113 train_acc= 0.9643 val_loss= 0.7817 val_acc= 0.8033 time= 0.0690
Epoch: 0230 train_loss= 0.4099 train_acc= 0.9714 val_loss= 0.7819 val_acc= 0.8000 time= 0.0720
Epoch: 0231 train_loss= 0.4083 train_acc= 0.9714 val_loss= 0.7813 val_acc= 0.8000 time= 0.0690
Epoch: 0232 train_loss= 0.4062 train_acc= 0.9714 val_loss= 0.7800 val_acc= 0.8033 time= 0.0620
Epoch: 0233 train_loss= 0.4046 train_acc= 0.9714 val_loss= 0.7787 val_acc= 0.8033 time= 0.0620
Epoch: 0234 train_loss= 0.4029 train_acc= 0.9786 val_loss= 0.7758 val_acc= 0.8100 time= 0.0620
Epoch: 0235 train_loss= 0.4014 train_acc= 0.9786 val_loss= 0.7730 val_acc= 0.8133 time= 0.0630
Epoch: 0236 train_loss= 0.3999 train_acc= 0.9786 val_loss= 0.7708 val_acc= 0.8267 time= 0.0620
Epoch: 0237 train_loss= 0.3985 train_acc= 0.9786 val_loss= 0.7687 val_acc= 0.8267 time= 0.0620
Epoch: 0238 train_loss= 0.3975 train_acc= 0.9714 val_loss= 0.7671 val_acc= 0.8300 time= 0.0680
Epoch: 0239 train_loss= 0.3964 train_acc= 0.9714 val_loss= 0.7663 val_acc= 0.8300 time= 0.0664
Epoch: 0240 train_loss= 0.3946 train_acc= 0.9714 val_loss= 0.7659 val_acc= 0.8300 time= 0.0650
Epoch: 0241 train_loss= 0.3930 train_acc= 0.9714 val_loss= 0.7658 val_acc= 0.8267 time= 0.0690
Epoch: 0242 train_loss= 0.3918 train_acc= 0.9714 val_loss= 0.7661 val_acc= 0.8267 time= 0.0670
Epoch: 0243 train_loss= 0.3907 train_acc= 0.9714 val_loss= 0.7660 val_acc= 0.8267 time= 0.0670
Epoch: 0244 train_loss= 0.3898 train_acc= 0.9786 val_loss= 0.7652 val_acc= 0.8267 time= 0.0710
Epoch: 0245 train_loss= 0.3886 train_acc= 0.9786 val_loss= 0.7641 val_acc= 0.8267 time= 0.0690
Epoch: 0246 train_loss= 0.3866 train_acc= 0.9786 val_loss= 0.7621 val_acc= 0.8267 time= 0.0700
Epoch: 0247 train_loss= 0.3848 train_acc= 0.9786 val_loss= 0.7611 val_acc= 0.8200 time= 0.0630
Epoch: 0248 train_loss= 0.3833 train_acc= 0.9786 val_loss= 0.7599 val_acc= 0.8200 time= 0.0631
Epoch: 0249 train_loss= 0.3818 train_acc= 0.9786 val_loss= 0.7581 val_acc= 0.8200 time= 0.0630
Epoch: 0250 train_loss= 0.3803 train_acc= 0.9714 val_loss= 0.7558 val_acc= 0.8200 time= 0.0650
Epoch: 0251 train_loss= 0.3788 train_acc= 0.9714 val_loss= 0.7526 val_acc= 0.8200 time= 0.0640
Epoch: 0252 train_loss= 0.3773 train_acc= 0.9643 val_loss= 0.7515 val_acc= 0.8200 time= 0.0630
Epoch: 0253 train_loss= 0.3760 train_acc= 0.9643 val_loss= 0.7506 val_acc= 0.8200 time= 0.0650
Epoch: 0254 train_loss= 0.3747 train_acc= 0.9714 val_loss= 0.7496 val_acc= 0.8167 time= 0.0660
Epoch: 0255 train_loss= 0.3739 train_acc= 0.9714 val_loss= 0.7487 val_acc= 0.8167 time= 0.0670
Epoch: 0256 train_loss= 0.3729 train_acc= 0.9786 val_loss= 0.7484 val_acc= 0.8167 time= 0.0670
Epoch: 0257 train_loss= 0.3719 train_acc= 0.9786 val_loss= 0.7478 val_acc= 0.8167 time= 0.0670
Epoch: 0258 train_loss= 0.3709 train_acc= 0.9786 val_loss= 0.7469 val_acc= 0.8167 time= 0.0660
Epoch: 0259 train_loss= 0.3693 train_acc= 0.9786 val_loss= 0.7465 val_acc= 0.8167 time= 0.0700
Epoch: 0260 train_loss= 0.3678 train_acc= 0.9786 val_loss= 0.7461 val_acc= 0.8133 time= 0.0705
Epoch: 0261 train_loss= 0.3661 train_acc= 0.9786 val_loss= 0.7466 val_acc= 0.8200 time= 0.0690
Epoch: 0262 train_loss= 0.3647 train_acc= 0.9857 val_loss= 0.7471 val_acc= 0.8133 time= 0.0640
Epoch: 0263 train_loss= 0.3635 train_acc= 0.9857 val_loss= 0.7472 val_acc= 0.8133 time= 0.0630
Epoch: 0264 train_loss= 0.3626 train_acc= 0.9857 val_loss= 0.7474 val_acc= 0.8133 time= 0.0620
Epoch: 0265 train_loss= 0.3617 train_acc= 0.9857 val_loss= 0.7467 val_acc= 0.8133 time= 0.0640
Epoch: 0266 train_loss= 0.3606 train_acc= 0.9857 val_loss= 0.7444 val_acc= 0.8200 time= 0.0640
Epoch: 0267 train_loss= 0.3599 train_acc= 0.9857 val_loss= 0.7412 val_acc= 0.8233 time= 0.0690
Epoch: 0268 train_loss= 0.3600 train_acc= 0.9786 val_loss= 0.7390 val_acc= 0.8267 time= 0.0675
Epoch: 0269 train_loss= 0.3599 train_acc= 0.9786 val_loss= 0.7366 val_acc= 0.8333 time= 0.0690
Epoch: 0270 train_loss= 0.3588 train_acc= 0.9786 val_loss= 0.7343 val_acc= 0.8333 time= 0.0690
Epoch: 0271 train_loss= 0.3572 train_acc= 0.9786 val_loss= 0.7323 val_acc= 0.8300 time= 0.0680
Epoch: 0272 train_loss= 0.3557 train_acc= 0.9714 val_loss= 0.7309 val_acc= 0.8233 time= 0.0670
Epoch: 0273 train_loss= 0.3546 train_acc= 0.9714 val_loss= 0.7301 val_acc= 0.8233 time= 0.0660
Epoch: 0274 train_loss= 0.3527 train_acc= 0.9714 val_loss= 0.7298 val_acc= 0.8200 time= 0.0690
Epoch: 0275 train_loss= 0.3507 train_acc= 0.9714 val_loss= 0.7292 val_acc= 0.8200 time= 0.0710
Epoch: 0276 train_loss= 0.3490 train_acc= 0.9714 val_loss= 0.7283 val_acc= 0.8233 time= 0.0680
Epoch: 0277 train_loss= 0.3476 train_acc= 0.9714 val_loss= 0.7277 val_acc= 0.8233 time= 0.0630
Epoch: 0278 train_loss= 0.3466 train_acc= 0.9857 val_loss= 0.7289 val_acc= 0.8267 time= 0.0630
Epoch: 0279 train_loss= 0.3463 train_acc= 0.9857 val_loss= 0.7312 val_acc= 0.8267 time= 0.0620
Epoch: 0280 train_loss= 0.3459 train_acc= 0.9857 val_loss= 0.7325 val_acc= 0.8233 time= 0.0621
Epoch: 0281 train_loss= 0.3449 train_acc= 0.9857 val_loss= 0.7319 val_acc= 0.8233 time= 0.0660
Epoch: 0282 train_loss= 0.3431 train_acc= 0.9857 val_loss= 0.7291 val_acc= 0.8267 time= 0.0660
Epoch: 0283 train_loss= 0.3419 train_acc= 0.9857 val_loss= 0.7267 val_acc= 0.8233 time= 0.0640
Epoch: 0284 train_loss= 0.3413 train_acc= 0.9714 val_loss= 0.7253 val_acc= 0.8167 time= 0.0660
Epoch: 0285 train_loss= 0.3413 train_acc= 0.9714 val_loss= 0.7261 val_acc= 0.8167 time= 0.0660
Epoch: 0286 train_loss= 0.3412 train_acc= 0.9714 val_loss= 0.7259 val_acc= 0.8200 time= 0.0670
Epoch: 0287 train_loss= 0.3406 train_acc= 0.9714 val_loss= 0.7257 val_acc= 0.8167 time= 0.0670
Epoch: 0288 train_loss= 0.3392 train_acc= 0.9714 val_loss= 0.7251 val_acc= 0.8167 time= 0.0670
Epoch: 0289 train_loss= 0.3372 train_acc= 0.9714 val_loss= 0.7238 val_acc= 0.8167 time= 0.0650
Epoch: 0290 train_loss= 0.3356 train_acc= 0.9786 val_loss= 0.7233 val_acc= 0.8167 time= 0.0730
Epoch: 0291 train_loss= 0.3349 train_acc= 0.9786 val_loss= 0.7238 val_acc= 0.8167 time= 0.0690
Epoch: 0292 train_loss= 0.3349 train_acc= 0.9786 val_loss= 0.7255 val_acc= 0.8200 time= 0.0630
Epoch: 0293 train_loss= 0.3348 train_acc= 0.9786 val_loss= 0.7262 val_acc= 0.8167 time= 0.0660
Epoch: 0294 train_loss= 0.3333 train_acc= 0.9786 val_loss= 0.7255 val_acc= 0.8233 time= 0.0620
Epoch: 0295 train_loss= 0.3313 train_acc= 0.9786 val_loss= 0.7241 val_acc= 0.8233 time= 0.0630
Epoch: 0296 train_loss= 0.3295 train_acc= 0.9786 val_loss= 0.7235 val_acc= 0.8167 time= 0.0623
Epoch: 0297 train_loss= 0.3285 train_acc= 0.9857 val_loss= 0.7224 val_acc= 0.8167 time= 0.0640
Epoch: 0298 train_loss= 0.3286 train_acc= 0.9857 val_loss= 0.7217 val_acc= 0.8100 time= 0.0660
Epoch: 0299 train_loss= 0.3284 train_acc= 0.9786 val_loss= 0.7219 val_acc= 0.8133 time= 0.0650
Epoch: 0300 train_loss= 0.3284 train_acc= 0.9786 val_loss= 0.7220 val_acc= 0.8133 time= 0.0640
Test set results: loss= 0.7690 accuracy= 0.8090

我们监控整个训练过程中的loss和accuracy指标,对其进行对比可视化,如下所示:

感兴趣都可以自行尝试实践下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1211921.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

百望云斩获“新华信用金兰杯”ESG优秀案例 全面赋能企业绿色数字化

近年来&#xff0c;中国ESG蓬勃发展&#xff0c;在政策体系构建、ESG信披ESG投资和国际合作等方面都取得了阶段性成效&#xff0c;ESG生态不断完善。全社会对ESG的认识及实践也在不断深化&#xff0c;ESG实践者的队伍在不断发展壮大。 ESG作为识别企业高质量发展的重要指标&…

2023年 华为杯数学建模 E题

本科大三的时候&#xff0c;打过一次美赛&#xff0c;当时租了一个民宿&#xff0c;和队友一起度过了专注的四天。当时比赛结束之后&#xff0c;拿着手机&#xff0c;看到四天没回的消息&#xff0c;四天没刷过的朋友圈&#xff0c;有种很新奇的感觉&#xff0c;谢谢美赛给了我…

AM335x核心板LCD信号导致DDR3内存不稳定

调试核心板时&#xff0c;碰到了点问题&#xff0c;DDR3内存始终不稳定&#xff0c;经过仔细调试&#xff0c;发现只要打开LCD显示&#xff0c;DDR3的数据就不定期的会有错误。为此单独在boot下做过内存测试&#xff0c; 就是每个地址都往里写0,0xffffffff&#xff0c;再写0x55…

【坑】idea终端下执行maven命令行报错:mvn clean install -Dspring.profiles.active=dev

直接看报错信息 解决方法 方法一 命令改为&#xff1a;mvn clean install -Dspring.profiles.activedev方法二 使用 cmd 进入命令行执行&#xff1a;mvn clean install -Dspring.profiles.activedev在新版本中的idea终端已经默认使用了类似windons10下的PowerShell窗口的风格…

『亚马逊云科技产品测评』活动征文|阿里云服务器亚马逊服务器综合评测

授权声明&#xff1a;本篇文章授权活动官方亚马逊云科技文章转发、改写权&#xff0c;包括不限于在 Developer Centre, 知乎&#xff0c;自媒体平台&#xff0c;第三方开发者媒体等亚马逊云科技官方渠道 文章目录 引言一、亚马逊&阿里云发展历史介绍1.1 亚马逊发展历史1.2…

【图像分类】【深度学习】【Pytorch版本】 GoogLeNet(InceptionV3)模型算法详解

【图像分类】【深度学习】【Pytorch版本】 GoogLeNet(InceptionV3)模型算法详解 文章目录 【图像分类】【深度学习】【Pytorch版本】 GoogLeNet(InceptionV3)模型算法详解前言GoogLeNet(InceptionV3)讲解Factorized Convolutions卷积分解InceptionV3结构ⅠInceptionV3结构ⅡInc…

CSGO游戏搬砖项目需要掌握哪些基础知识?

CSGO搬砖之90%饰品商人都不知道的玄学皮肤盘点 CSGO游戏搬砖主要就是倒卖装备&#xff0c;那具体是哪些装备&#xff0c;以及怎么去区分皮肤类型&#xff0c;今天童话就给大家介绍一下。 CSGO游戏搬砖虽然不要求会玩游戏&#xff0c;但是我们作为一个商人&#xff0c;要知道我…

Linux常用命令用法及实现方式有哪些?

接上一篇&#xff0c;它来啦&#xff01; 5.文本文件编辑命令 (1)touch命令&#xff1a;touch命令用于创建空白文件或设置文件的时间&#xff0c;语法格式为“touch [参数] 文件名称”。 (2)mkdir命令&#xff1a;mkdir命令用于创建空白的目录&#xff0c;英文全称为“make dir…

excel数据文件的正常表达形式

正常有内容的excel文件是这样子 假若全部显示null 就没有修复的必要了 #数据恢复#

在vue项目里面使用index.ts进行统一导出

目录 一、概述 二、具体实践 2.1创建目录 2.2index.ts文件内容展示 2.2在需要的vue文件里面import 2.3vue全代码 三、实际效果 一、概述 一般我们在做项目的时候会发现vue文件里面没有export default 转而替代的是使用同目录下index.ts进行统一导出 好处&#xff1a;能…

翻牌器特效--vue3 封装组件

1.效果图 2.下面为封装好的代码&#xff0c;在页面中引入即可 html <template><div id"flip-container" v-if"flag false"><div id"digit-1"class"digit">0</div><div id"digit-2"class"…

京东API商品详情接口丨关键词搜索接口丨优惠券接口丨京东店铺所有商品接口

京东API商品详情接口&#xff0c;关键词搜索接口&#xff0c;优惠券接口&#xff0c;京东店铺所有商品接口如下&#xff1a; item_get-获得JD商品详情 公共参数 请求地址: https://o0b.cn/anzexi 名称类型必须描述keyString是调用key&#xff08;必须以GET方式拼接在URL中&…

【深度学习】SimSwap: An Efficient Framework For High Fidelity Face Swapping 换脸,实战

代码&#xff1a;https://github.com/neuralchen/SimSwap 文章目录 摘要介绍RELATED WORK实验结论代码实操 SimSwap是一个高保真度人脸交换的高效框架。它将源脸的身份转移到目标脸上&#xff0c;同时保留目标脸的属性。该框架包括ID注入模块&#xff08;IIM&#xff09;&#…

SchedulingConfigurer教程,怎么使用Spring自带的可扩展定时任务调度接口

简介&#xff1a; SchedulingConfigurer 是 Spring 框架中的一个接口&#xff0c;用于配置任务调度&#xff08;scheduling&#xff09;的相关设置。在 Spring 中&#xff0c;任务调度通常通过 Spring 的任务调度模块&#xff08;Task Scheduling&#xff09;来实现&#xff0c…

定位咨询与资源分配:最大化效益的关键

在当今竞争激烈的商业环境中&#xff0c;企业如何确保每一分投资都能产生最大的回报?答案在于有效的市场定位和精明的资源分配。本文将探讨定位咨询如何成为企业资源分配和效益最大化的关键。 定位咨询的核心作用 定位咨询是企业发现其在市场上独特地位的过程。这不仅关乎营销…

门店如何设置多个联系电话和营业时间

​小程序中门店信息是非常重要的&#xff0c;通常需要有门店地址、门店电话和营业时间等。采云小程序支持设置多个门店联系电话&#xff0c;避免客户无法联系到门店。而且&#xff0c;也支持设置多个营业时间时段。例如周一到周五早08:00 - 18:00 。客户在周末下单的时候&#…

记录一次hibernate3.1 方言问题

错误&#xff1a;com.sun.proxy.$Proxy553 cannot be cast to java.lang.string 我们项目上&#xff0c;将mysql数据库迁移到达梦数据库&#xff0c;这样会造成数据库类型上在java查询下&#xff0c;会有不兼容的问题&#xff0c;比如clob&#xff0c;text等&#xff0c;…

Chrome 浏览器经常卡死问题解决

Chrome 浏览器经常卡死问题解决 chrome 任务管理器杀进程 mac 后台有很多 google chrome helper 线程并且内存占用较高 一直怀疑是插件的锅 其实并不是-0- 查看是哪个网页&#xff0c;哪个插件占用内存 chrome 更多工具 -> 任务管理器 切换到稳定版本的 chrome&#xff0c…

架构开发与优化咨询和实施服务

服务概述 得益于硬件平台算力的提升&#xff0c;汽车电子电气架构的集成度逐渐提高&#xff0c;从单体ECU、到功能域集成控制器、到区域集成控制器&#xff0c;多域融合成为了目前行业中软件工程的重要工作内容。同时&#xff0c;在传统控制器C代码开发的基础上&#xff0c;C、…