竞赛 题目:基于卷积神经网络的手写字符识别 - 深度学习

news2024/11/16 3:32:51

文章目录

  • 0 前言
  • 1 简介
  • 2 LeNet-5 模型的介绍
    • 2.1 结构解析
    • 2.2 C1层
    • 2.3 S2层
      • S2层和C3层连接
    • 2.4 F6与C5层
  • 3 写数字识别算法模型的构建
    • 3.1 输入层设计
    • 3.2 激活函数的选取
    • 3.3 卷积层设计
    • 3.4 降采样层
    • 3.5 输出层设计
  • 4 网络模型的总体结构
  • 5 部分实现代码
  • 6 在线手写识别
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于卷积神经网络的手写字符识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 简介

该设计学长使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统。

这是学长做的深度学习demo,大家可以用于竞赛课题。

这里学长不会以论文的形式展现,而是以编程实战完成深度学习项目的角度去描述。

项目要求:主要解决的问题是手写数字识别,最终要完成一个识别系统。

设计识别率高的算法,实现快速识别的系统。

2 LeNet-5 模型的介绍

学长实现手写数字识别,使用的是卷积神经网络,建模思想来自LeNet-5,如下图所示:

在这里插入图片描述

2.1 结构解析

这是原始的应用于手写数字识别的网络,我认为这也是最简单的深度网络。

LeNet-5不包括输入,一共7层,较低层由卷积层和最大池化层交替构成,更高层则是全连接和高斯连接。

LeNet-5的输入与BP神经网路的不一样。这里假设图像是黑白的,那么LeNet-5的输入是一个32*32的二维矩阵。同
时,输入与下一层并不是全连接的,而是进行稀疏连接。本层每个神经元的输入来自于前一层神经元的局部区域(5×5),卷积核对原始图像卷积的结果加上相应的阈值,得出的结果再经过激活函数处理,输出即形成卷积层(C层)。卷积层中的每个特征映射都各自共享权重和阈值,这样能大大减少训练开销。降采样层(S层)为减少数据量同时保存有用信息,进行亚抽样。

2.2 C1层

第一个卷积层(C1层)由6个特征映射构成,每个特征映射是一个28×28的神经元阵列,其中每个神经元负责从5×5的区域通过卷积滤波器提取局部特征。一般情况下,滤波器数量越多,就会得出越多的特征映射,反映越多的原始图像的特征。本层训练参数共6×(5×5+1)=156个,每个像素点都是由上层5×5=25个像素点和1个阈值连接计算所得,共28×28×156=122304个连接。

2.3 S2层

S2层是对应上述6个特征映射的降采样层(pooling层)。pooling层的实现方法有两种,分别是max-pooling和mean-
pooling,LeNet-5采用的是mean-
pooling,即取n×n区域内像素的均值。C1通过2×2的窗口区域像素求均值再加上本层的阈值,然后经过激活函数的处理,得到S2层。pooling的实现,在保存图片信息的基础上,减少了权重参数,降低了计算成本,还能控制过拟合。本层学习参数共有1*6+6=12个,S2中的每个像素都与C1层中的2×2个像素和1个阈值相连,共6×(2×2+1)×14×14=5880个连接。

S2层和C3层连接

S2层和C3层的连接比较复杂。C3卷积层是由16个大小为10×10的特征映射组成的,当中的每个特征映射与S2层的若干个特征映射的局部感受野(大小为5×5)相连。其中,前6个特征映射与S2层连续3个特征映射相连,后面接着的6个映射与S2层的连续的4个特征映射相连,然后的3个特征映射与S2层不连续的4个特征映射相连,最后一个映射与S2层的所有特征映射相连。

此处卷积核大小为5×5,所以学习参数共有6×(3×5×5+1)+9×(4×5×5+1)+1×(6×5×5+1)=1516个参数。而图像大小为28×28,因此共有151600个连接。

S4层是对C3层进行的降采样,与S2同理,学习参数有16×1+16=32个,同时共有16×(2×2+1)×5×5=2000个连接。
C5层是由120个大小为1×1的特征映射组成的卷积层,而且S4层与C5层是全连接的,因此学习参数总个数为120×(16×25+1)=48120个。

2.4 F6与C5层

F6是与C5全连接的84个神经元,所以共有84×(120+1)=10164个学习参数。

卷积神经网络通过通过稀疏连接和共享权重和阈值,大大减少了计算的开销,同时,pooling的实现,一定程度上减少了过拟合问题的出现,非常适合用于图像的处理和识别。

3 写数字识别算法模型的构建

3.1 输入层设计

输入为28×28的矩阵,而不是向量。

在这里插入图片描述

3.2 激活函数的选取

Sigmoid函数具有光滑性、鲁棒性和其导数可用自身表示的优点,但其运算涉及指数运算,反向传播求误差梯度时,求导又涉及乘除运算,计算量相对较大。同时,针对本文构建的含有两层卷积层和降采样层,由于sgmoid函数自身的特性,在反向传播时,很容易出现梯度消失的情况,从而难以完成网络的训练。因此,本文设计的网络使用ReLU函数作为激活函数。

在这里插入图片描述

3.3 卷积层设计

学长设计卷积神经网络采取的是离散卷积,卷积步长为1,即水平和垂直方向每次运算完,移动一个像素。卷积核大小为5×5。

3.4 降采样层

学长设计的降采样层的pooling方式是max-pooling,大小为2×2。

3.5 输出层设计

输出层设置为10个神经网络节点。数字0~9的目标向量如下表所示:

在这里插入图片描述

4 网络模型的总体结构

在这里插入图片描述

5 部分实现代码

使用Python,调用TensorFlow的api完成手写数字识别的算法。

注:我的程序运行环境是:Win10,python3.。

当然,也可以在Linux下运行,由于TensorFlow对py2和py3兼容得比较好,在Linux下可以在python2.7中运行。


    #!/usr/bin/env python2
    # -*- coding: utf-8 -*-
   
    #import modules
    import numpy as np
    import matplotlib.pyplot as plt
    #from sklearn.metrics import confusion_matrix
    import tensorflow as tf
    import time
    from datetime import timedelta
    import math
    from tensorflow.examples.tutorials.mnist import input_data

    def new_weights(shape):
      return tf.Variable(tf.truncated_normal(shape,stddev=0.05))
    def new_biases(length):
      return tf.Variable(tf.constant(0.1,shape=length))
    def conv2d(x,W):
      return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
    def max_pool_2x2(inputx):
      return tf.nn.max_pool(inputx,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
    
    #import data
    data = input_data.read_data_sets("./data", one_hot=True) # one_hot means [0 0 1 0 0 0 0 0 0 0] stands for 2
    
    print("Size of:")
    print("--Training-set:\t\t{}".format(len(data.train.labels)))
    print("--Testing-set:\t\t{}".format(len(data.test.labels)))
    print("--Validation-set:\t\t{}".format(len(data.validation.labels)))
    data.test.cls = np.argmax(data.test.labels,axis=1)  # show the real test labels: [7 2 1 ..., 4 5 6], 10000values
    
    x = tf.placeholder("float",shape=[None,784],name='x')
    x_image = tf.reshape(x,[-1,28,28,1])
    
    y_true = tf.placeholder("float",shape=[None,10],name='y_true')
    y_true_cls = tf.argmax(y_true,dimension=1)
    # Conv 1
    layer_conv1 = {"weights":new_weights([5,5,1,32]),
            "biases":new_biases([32])}
    h_conv1 = tf.nn.relu(conv2d(x_image,layer_conv1["weights"])+layer_conv1["biases"])
    h_pool1 = max_pool_2x2(h_conv1)
    # Conv 2
    layer_conv2 = {"weights":new_weights([5,5,32,64]),
            "biases":new_biases([64])}
    h_conv2 = tf.nn.relu(conv2d(h_pool1,layer_conv2["weights"])+layer_conv2["biases"])
    h_pool2 = max_pool_2x2(h_conv2)
    # Full-connected layer 1
    fc1_layer = {"weights":new_weights([7*7*64,1024]),
          "biases":new_biases([1024])}
    h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,fc1_layer["weights"])+fc1_layer["biases"])
    # Droupout Layer
    keep_prob = tf.placeholder("float")
    h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
    # Full-connected layer 2
    fc2_layer = {"weights":new_weights([1024,10]),
           "biases":new_weights([10])}
    # Predicted class
    y_pred = tf.nn.softmax(tf.matmul(h_fc1_drop,fc2_layer["weights"])+fc2_layer["biases"]) # The output is like [0 0 1 0 0 0 0 0 0 0]
    y_pred_cls = tf.argmax(y_pred,dimension=1) # Show the real predict number like '2'
    # cost function to be optimized
    cross_entropy = -tf.reduce_mean(y_true*tf.log(y_pred))
    optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy)
    # Performance Measures
    correct_prediction = tf.equal(y_pred_cls,y_true_cls)
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
    with tf.Session() as sess:
      init = tf.global_variables_initializer()
      sess.run(init)
      train_batch_size = 50
      def optimize(num_iterations):
        total_iterations=0
        start_time = time.time()
        for i in range(total_iterations,total_iterations+num_iterations):
          x_batch,y_true_batch = data.train.next_batch(train_batch_size)
          feed_dict_train_op = {x:x_batch,y_true:y_true_batch,keep_prob:0.5}
          feed_dict_train = {x:x_batch,y_true:y_true_batch,keep_prob:1.0}
          sess.run(optimizer,feed_dict=feed_dict_train_op)
          # Print status every 100 iterations.
          if i%100==0:
            # Calculate the accuracy on the training-set.
            acc = sess.run(accuracy,feed_dict=feed_dict_train)
            # Message for printing.
            msg = "Optimization Iteration:{0:>6}, Training Accuracy: {1:>6.1%}"
            # Print it.
            print(msg.format(i+1,acc))
        # Update the total number of iterations performed
        total_iterations += num_iterations
        # Ending time
        end_time = time.time()
        # Difference between start and end_times.
        time_dif = end_time-start_time
        # Print the time-usage
        print("Time usage:"+str(timedelta(seconds=int(round(time_dif)))))
      test_batch_size = 256
      def print_test_accuracy():
        # Number of images in the test-set.
        num_test = len(data.test.images)
        cls_pred = np.zeros(shape=num_test,dtype=np.int)
        i = 0
        while i < num_test:
          # The ending index for the next batch is denoted j.
          j = min(i+test_batch_size,num_test)
          # Get the images from the test-set between index i and j
          images = data.test.images[i:j, :]
          # Get the associated labels
          labels = data.test.labels[i:j, :]
          # Create a feed-dict with these images and labels.
          feed_dict={x:images,y_true:labels,keep_prob:1.0}
          # Calculate the predicted class using Tensorflow.
          cls_pred[i:j] = sess.run(y_pred_cls,feed_dict=feed_dict)
          # Set the start-index for the next batch to the
          # end-index of the current batch
          i = j
        cls_true = data.test.cls
        correct = (cls_true==cls_pred)
        correct_sum = correct.sum()
        acc = float(correct_sum) / num_test
        # Print the accuracy
        msg = "Accuracy on Test-Set: {0:.1%} ({1}/{2})"
        print(msg.format(acc,correct_sum,num_test))
      # Performance after 10000 optimization iterations
      optimize(num_iterations=10000)
      print_test_accuracy()
      savew_hl1 = layer_conv1["weights"].eval()
      saveb_hl1 = layer_conv1["biases"].eval()
      savew_hl2 = layer_conv2["weights"].eval()
      saveb_hl2 = layer_conv2["biases"].eval()
      savew_fc1 = fc1_layer["weights"].eval()
      saveb_fc1 = fc1_layer["biases"].eval()
      savew_op = fc2_layer["weights"].eval()
      saveb_op = fc2_layer["biases"].eval()
    
      np.save("savew_hl1.npy", savew_hl1)
      np.save("saveb_hl1.npy", saveb_hl1)
      np.save("savew_hl2.npy", savew_hl2)
      np.save("saveb_hl2.npy", saveb_hl2)
      np.save("savew_hl3.npy", savew_fc1)
      np.save("saveb_hl3.npy", saveb_fc1)
      np.save("savew_op.npy", savew_op)
      np.save("saveb_op.npy", saveb_op)

运行结果显示:测试集中准确率大概为99.2%。

在这里插入图片描述
查看混淆矩阵

在这里插入图片描述

6 在线手写识别

请添加图片描述

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1211887.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

springboot集成swagger3+解决页面无法访问问题

引入依赖 pom文件引入swagger3依赖 <dependency><groupId>io.springfox</groupId><artifactId>springfox-boot-starter</artifactId><version>3.0.0</version></dependency>配置启动文件 swagger使用ant_pattern_parser解析…

【Mycat2实战】三、Mycat实现读写分离

1. 无聊的理论知识 什么是读写分离 读写分离&#xff0c;基本的原理是让主数据库处理事务性增、改、删操作&#xff0c; 而从数据库处理查询操作。 为什么使用读写分离 从集中到分布&#xff0c;最基本的一个需求不是数据存储的瓶颈&#xff0c;而是在于计算的瓶颈&#xff…

第六届浙江省大学生网络与信息安全竞赛 2023年 初赛/决赛 WEB方向 Writeup

-------------------【初赛】------------------- easy php 简单反序列化 __debuginfo()魔术方法打印所需调试信息&#xff0c;反序列化时候执行&#xff01; 链子如下&#xff1a; BBB::__debuginfo()->CCC::__toString()->AAA::__call()EXP&#xff1a; <?php…

汽配零件发FBA美国专线

随着电商的迅速发展&#xff0c;跨境电商平台如亚马逊的FBA(Fulfillment by Amazon)服务成为了许多商家选择的销售渠道。对于汽配零件行业来说&#xff0c;发FBA美国专线可以打开更广阔的市场&#xff0c;并且有望获得可观的发展前景。下面将从市场分析和前景两个方面来探讨汽配…

多目标跟踪指标

Avg rank This is the rank of each tracker averaged over all present evaluaion measures 这是每个跟踪器在所有现有评估指标上的平均排名。 MOTA Multiple Object Tracking Accuracy This measure combines three error sources &#xff1a;false positives&#xf…

报错缺少class(org.apache.hadoop.hdfs.DistributedFileSystem)

平台报错缺少 java.lang.RuntimeException:java.lang.ClassNotFoundException: Class org.apache.hadoop.hdfs.DistributedFileSystem not found 实则是缺少jar包 hadoop-hdfs-client-3.1.1.3.1.0.0-78.jar 找到对应的jar放到程序的lib中即可

2023 年是无代码的一年,还要程序员吗?

从 Code 到 No Code&#xff0c;IT 界对简化代码开发的需求由来已久&#xff1a;过去数十年的发展历程中&#xff0c;在企业应用程序开发上&#xff0c;我们研发出工作流、智能业务流程管理系统、低代码/无代码、还有高生产力应用程序平台等应用开发形式。 有一句话在 IT 界流…

海康设备、LiveNVR等通过GB35114国密协议对接到LiveGBS GB28181/GB35114平台的详细操作说明

一、LiveNVR通过GB35114接入LiveGBS 1.1 开启LiveGBS 35114功能 信令服务livecms.ini配置文件中[sip]增加一行gm1 启动LiveCMS 1.2 生成设备端证书 我们用LiveNVR做为设备端向LiveGBS注册&#xff0c;这里先生成LiveNVR的设备证书&#xff0c;并将LiveNVR的设备证书给LiveGB…

人工智能基础_机器学习036_多项式回归升维实战3_使用线性回归模型_对天猫双十一销量数据进行预测_拟合---人工智能工作笔记0076

首先我们拿到双十一从2009年到2018年的数据 可以看到上面是代码,我们自己去写一下 首先导包,和准备数据 from sklearn.linear_model import SGDRegressor import numpy as np import matplotlib.pyplot as plt X=np.arange(2009.2020)#左闭右开,2009到2019 获取从2009到202…

中国人民大学与加拿大女王大学金融硕士——人生下半场,用实力为自己“撑腰”

人生如同一场漫长的旅程&#xff0c;每个人都在不断地前行&#xff0c;经历着种种的人生阶段。当我们迈入人生的下半场&#xff0c;我们不再是无知少年&#xff0c;而是逐渐成为社会的中坚力量。在这个阶段&#xff0c;我们不仅要面对更多的挑战和压力&#xff0c;还需要用实力…

等保到底在“保”什么?

在信息时代&#xff0c;等保评级成为衡量企业信息安全水平的重要标准。那么&#xff0c;什么是等保评级呢&#xff1f;等保合规到底保的是什么呢&#xff1f;一起来看看吧。 编辑搜图 请点击输入图片描述&#xff08;最多18字&#xff09; 等保评级&#xff0c;会从七个维度进…

总结 MyBatis 的XML实现方法(使用XML使用实现数据的增删改查操作)

MyBatis是一个优秀的持久层框架&#xff0c;它的XML配置文件是实现数据库操作的关键之一。通过XML文件&#xff0c;可以定义SQL语句、映射关系和一些高级功能。下面将探讨下如何使用MyBatis的XML配置文件实现数据的增、删、改、查操作。 1.配置文件 首先要确保 mybatis-confi…

基于MS16F3211芯片的触摸控制灯的状态变化和亮度控制(11.15)

1.任务所需实现基本功能 关机状态时白灯亮蓝灯灭&#xff0c;此时长按按键无反应&#xff0c;白灯亮度降低的状态&#xff0c;蓝灯保持灭的状态。点按按键一次&#xff0c;白灯熄灭&#xff0c;蓝灯亮此时W引脚控制的灯亮。继续点按按键。蓝灯亮&#xff0c;此时W引脚控制的灯…

OSPF常用配置例子

拓朴图如下&#xff1a; 配置步骤&#xff1a; 1.配置IP 2.ospf多区域配置 *Tips&#xff1a;undo info-center enable 关闭信息回显 3.出口设备注入默认路由&#xff08;完成标志是各路由器学习到默认路由&#xff0c;下发默认路由&#xff09; R1]default-route-adve…

HTTP代理与SOCKS5代理,有什么区别?

在数字通信领域&#xff0c;数据安全和匿名性都是非常重要的指标。互联网的不断发展催生了几种协议&#xff0c;每种协议都有独特的优势和挑战。其中&#xff0c;SOCKS5 代理、HTTP代理最为广泛使用&#xff0c;下面给大家一起讨论&#xff0c;HTTP代理与SOCKS5代理&#xff0c…

《洛谷深入浅出进阶篇》 P1496火烧赤壁——初识离散化

上链接&#xff1a; P1496 火烧赤壁 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)https://www.luogu.com.cn/problem/P1496上题干&#xff1a; 有一组序列&#xff0c;[-2^31,2^31] &#xff0c; 现在给你n次操作&#xff0c;每一次操作给出两个整数l&#xff0c;r&#xff…

设计测试用例的6种基本原则

设计测试用例的基本原则&#xff0c;对于软件测试非常重要&#xff0c;这些原则有助于设计出高质量、全面、有效的测试用例&#xff0c;从而提高软件测试的效率和准确性&#xff0c;维护软件的质量和稳定。如果在设计用例时没有遵循基本原则&#xff0c;这会影响用例的全面性、…

openGauss学习笔记-124 openGauss 数据库管理-设置账本数据库-查看账本历史操作记录

文章目录 openGauss学习笔记-124 openGauss 数据库管理-设置账本数据库-查看账本历史操作记录124.1 前提条件124.2 背景信息124.3 操作步骤 openGauss学习笔记-124 openGauss 数据库管理-设置账本数据库-查看账本历史操作记录 124.1 前提条件 系统中需要有审计管理员或者具有…

DevEco studio配置自己的虚拟环境

开始使用DevEco studio时使用的时华为预置的手机&#xff0c;通过网络访问&#xff0c;但是近期发现有两点问题 网络不稳定的时候机器很卡现在资源很难使用 DevEco提供了自定义环境的搭建&#xff0c;从而解决上面的问题 这里有几点问题需要硬盘至少10G空闲&#xff08;应该问题…

06 robotFrameWork+selenium2Library KiLL清理进程

1、新建bat文件&#xff1a;kill.bat 2、文件中添加&#xff1a; taskkill /F /IM IEDriverServer.exe taskkill /F /IM iexplore.exe taskkill /F /IM chrome.exe taskkill /F /IM chromedriver.exe 3、新建的关键字中&#xff0c;调用kill.bat OperatingSystem.Run ${CU…