深度学习 机器视觉 车位识别车道线检测 - python opencv 计算机竞赛

news2025/1/23 17:46:21

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习 机器视觉 车位识别车道线检测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

简介

你是不是经常在停车场周围转来转去寻找停车位。如果你的车辆能准确地告诉你最近的停车位在哪里,那是不是很爽?事实证明,基于深度学习和OpenCV解决这个问题相对容易,只需获取停车场的实时视频即可。

检测效果

废话不多说, 先上效果图
在这里插入图片描述
在这里插入图片描述
注意车辆移动后空车位被标记上
在这里插入图片描述
在这里插入图片描述

车辆移动到其他车位

在这里插入图片描述

实现方式
整体思路

这个流程的第一步就是检测一帧视频中所有可能的停车位。显然,在我们能够检测哪个是没有被占用的停车位之前,我们需要知道图像中的哪些部分是停车位。

第二步就是检测每帧视频中的所有车辆。这样我们可以逐帧跟踪每辆车的运动。

第三步就是确定哪些车位目前是被占用的,哪些没有。这需要结合前两步的结果。

最后一步就是出现新车位时通知我。这需要基于视频中两帧之间车辆位置的变化。

这里的每一步,我们都可以使用多种技术用很多种方式实现。构建这个流程并没有唯一正确或者错误的方式,但不同的方法会有优劣之分。

使用要使用到两个视觉识别技术 :识别空车位停车线,识别车辆
检测空车位

车位探测系统的第一步是识别停车位。有一些技巧可以做到这一点。例如,通过在一个地点定位停车线来识别停车位。这可以使用OpenCV提供的边缘检测器来完成。但是如果没有停车线呢?

我们可以使用的另一种方法是假设长时间不移动的汽车停在停车位上。换句话说,有效的停车位就是那些停着不动的车的地方。但是,这似乎也不可靠。它可能会导致假阳性和真阴性。

那么,当自动化系统看起来不可靠时,我们应该怎么做呢?我们可以手动操作。与基于空间的方法需要对每个不同的停车位进行标签和训练不同,我们只需标记一次停车场边界和周围道路区域即可为新的停车位配置我们的系统。

在这里,我们将从停车位的视频流中截取一帧,并标记停车区域。Python库matplotlib
提供了称为PolygonSelector的功能。它提供了选择多边形区域的功能。

我制作了一个简单的python脚本来标记输入视频的初始帧之一上的多边形区域。它以视频路径作为参数,并将选定多边形区域的坐标保存在pickle文件中作为输出。

在这里插入图片描述

import os
import numpy as np
import cv2
import pickle
import argparse
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
from matplotlib.widgets import PolygonSelector
from matplotlib.collections import PatchCollection
from shapely.geometry import box
from shapely.geometry import Polygon as shapely_poly

points = []
prev_points = []
patches = []
total_points = []
breaker = False

class SelectFromCollection(object):
 def __init__(self, ax):
 self.canvas = ax.figure.canvas
 self.poly = PolygonSelector(ax, self.onselect)
 self.ind = []

 def onselect(self, verts):
 global points
 points = verts
 self.canvas.draw_idle()

 def disconnect(self):
 self.poly.disconnect_events()
 self.canvas.draw_idle()

def break_loop(event):
 global breaker
 global globSelect
 global savePath
 if event.key == 'b':
 globSelect.disconnect()
 if os.path.exists(savePath):
 os.remove(savePath)

 print("data saved in "+ savePath + " file") 
 with open(savePath, 'wb') as f:
 pickle.dump(total_points, f, protocol=pickle.HIGHEST_PROTOCOL)
 exit()

def onkeypress(event):
 global points, prev_points, total_points
 if event.key == 'n': 
 pts = np.array(points, dtype=np.int32) 
 if points != prev_points and len(set(points)) == 4:
 print("Points : "+str(pts))
 patches.append(Polygon(pts))
 total_points.append(pts)
 prev_points = points

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument('video_path', help="Path of video file")
 parser.add_argument('--out_file', help="Name of the output file", default="regions.p")
 args = parser.parse_args()

 global globSelect
 global savePath
 savePath = args.out_file if args.out_file.endswith(".p") else args.out_file+".p"

 print("\n> Select a region in the figure by enclosing them within a quadrilateral.")
 print("> Press the 'f' key to go full screen.")
 print("> Press the 'esc' key to discard current quadrilateral.")
 print("> Try holding the 'shift' key to move all of the vertices.")
 print("> Try holding the 'ctrl' key to move a single vertex.")
 print("> After marking a quadrilateral press 'n' to save current quadrilateral and then press 'q' to start marking a new quadrilateral")
 print("> When you are done press 'b' to Exit the program\n")
 
 video_capture = cv2.VideoCapture(args.video_path)
 cnt=0
 rgb_image = None
 while video_capture.isOpened():
 success, frame = video_capture.read()
 if not success:
 break
 if cnt == 5:
 rgb_image = frame[:, :, ::-1]
 cnt += 1
 video_capture.release()
 
 while True:
 fig, ax = plt.subplots()
 image = rgb_image
 ax.imshow(image)
 
 p = PatchCollection(patches, alpha=0.7)
 p.set_array(10*np.ones(len(patches)))
 ax.add_collection(p)
 
 globSelect = SelectFromCollection(ax)
 bbox = plt.connect('key_press_event', onkeypress)
 break_event = plt.connect('key_press_event', break_loop)
 plt.show()
 globSelect.disconnect()
车辆识别

要检测视频中的汽车,我使用Mask-
RCNN。它是一个卷积神经网络,对来自几个数据集(包括COCO数据集)的数百万个图像和视频进行了训练,以检测各种对象及其边界。 Mask-
RCNN建立在Faster-RCNN对象检测模型的基础上。

除了每个检测到的对象的类标签和边界框坐标外,Mask RCNN还将返回图像中每个检测到的对象的像pixel-wise mask。这种pixel-wise
masking称为“ 实例分割”。我们在计算机视觉领域所看到的一些最新进展,包括自动驾驶汽车、机器人等,都是由实例分割技术推动的。

M-RCNN将用于视频的每一帧,它将返回一个字典,其中包含边界框坐标、检测对象的masks、每个预测的置信度和检测对象的class_id。现在使用class_ids过滤掉汽车,卡车和公共汽车的边界框。然后,我们将在下一步中使用这些框来计算IoU。

由于Mask-RCNN比较复杂,这里篇幅有限,需要mask-RCNN的同学联系博主获取, 下面仅展示效果:

在这里插入图片描述

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1209859.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

建造者模式(创建型)

目录 一、前言 二、建造者模式 三、链式编程实现建造者模式 四、总结 一、前言 当我们开发一个软件应用时,我们通常需要创建各种对象。有些对象是简单的,可以直接实例化,但有些对象则比较复杂,需要多个步骤才能创建完成。这时…

PP-ChatOCRv2、PP-TSv2、大模型半监督学习工具...PaddleX新特性等你来pick!

小A是一名刚刚毕业的算法工程师,有一天,他被老板安排了一个活,要对一批合同扫描件进行自动化信息抽取,输出结构化的分析报表。OCR问题不大,但是怎么进行批量的结构化信息抽取呢?小A陷入了苦苦思索… 小B是…

【每日一题】K 个元素的最大和

文章目录 Tag题目来源解题思路方法一:贪心 其他语言Cpython3 写在最后 Tag 【贪心】【脑筋急转弯】【数组】【2023-11-15】 题目来源 2656. K 个元素的最大和 解题思路 方法一:贪心 从第一次操作开始每次选择数组中的最大值,由于最大值在…

原论文一比一复现 | 更换 RT-DETR 主干网络为 【ResNet-50】【ResNet-101】【ResNet-152】| 对比实验必备

本专栏内容均为博主独家全网首发,未经授权,任何形式的复制、转载、洗稿或传播行为均属违法侵权行为,一经发现将采取法律手段维护合法权益。我们对所有未经授权传播行为保留追究责任的权利。请尊重原创,支持创作者的努力,共同维护网络知识产权。 更深层的神经网络更难训练。…

一文讲清生产质量场景的数据分析思路及案例实战

今天,顺着制造业数据分析这个大主题,我们来讲讲质量管理数据分析。   说起质量管理,就是对所生产的产品质量进行管理,其最终目的就是保证客户收到的产品质量,提高客户满意度,减少退货和维修的数量。质量管…

IP-guard flexpaper远程命令执行漏洞复现 [附POC]

文章目录 IP-guard flexpaper RCE漏洞复现 [附POC]0x01 前言0x02 漏洞描述0x03 影响版本0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现 0x06 修复建议 IP-guard flexpaper RCE漏洞复现 [附POC] 0x01 前言 免责声明:请勿利用文章内的相关技术从事非法测…

首发!动手学大模型应用开发教程来了

大模型正逐步成为信息世界的新革命力量,其通过强大的自然语言理解、自然语言生成能力,为开发者提供了新的、更强大的应用开发选择。随着国内外井喷式的大模型 API 服务开放,如何基于大模型 API 快速、便捷地开发具备更强能力、集成大模型的应…

Windows10下Docker安装Mysql5.7

文章目录 Windows10下Docker安装Mysql5.7环境说明打开命令工具搜索镜像拉取镜像查看所有镜像启动镜像查看容器查看所有容器查看运行中容器 进入容器进入容器命令输入账号命令输入密码 添加mysql的远程账号创建一个数据库 Windows10下Docker安装Mysql5.7 环境说明 docker&…

【VBA】基于EXCEL生成Insert语句工具

工具介绍 基于Excel生成INSERT语句工具是一个辅助工具,用于帮助用户根据Excel数据生成INSERT语句。通常,在数据库中插入大量数据时,手动编写INSERT语句会非常繁琐和耗时。而使用这个工具,可以通过Excel中的数据自动生成相应的INS…

【模板】单源最短路径(弱化版)P3371

【模板】单源最短路径(弱化版) 题目背景 本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779。 题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路…

116.飞行员兄弟

题目链接 思路 明天补 代码 #include<bits/stdc.h> using namespace std; const int N 10; char g[N][N]; char backup[N][N]; int ans 0x3f3f3f3f; vector<pair<int, int>> v; int get(int x, int y) {return x * 4 y; } void turn (int x, int y) {i…

02 # 类型基础:强类型与弱类型

宽泛的定义 在强类型语言中&#xff0c;当一个对象从调用函数传递到被调用函数时&#xff0c;其类型必须与被调用函数中声明的类型兼容 – Liskov, Zilles 1974 通俗定义 强类型语言不允许改变变量的数据类型&#xff0c;除非进行强制类型转换 比如下面 Java 里不能将布尔类…

Python-Python高阶技巧:HTTP协议、静态Web服务器程序开发、循环接收客户端的连接请求

版本说明 当前版本号[20231114]。 版本修改说明20231114初版 目录 文章目录 版本说明目录HTTP协议1、网址1.1 网址的概念1.2 URL的组成1.3 知识要点 2、HTTP协议的介绍2.1 HTTP协议的概念及作用2.2 HTTP协议的概念及作用2.3 浏览器访问Web服务器的过程 3、HTTP请求报文3.1 H…

深入学习 Android Framework 之 SystemServer 进程启动详解

深入学习 Android Framework 第三&#xff1a;深入学习 Android Framework 之 SystemServer 进程启动详解 文章目录 深入学习 Android Framework前言一、Android 系统的启动流程1. 流程图2. 启动流程概述 二、源码详解1. 时序图2. 源代码1、ZygoteInit # main()2、ZygoteInit …

Ubuntu 17.10 “Artful Aardvark” 发布首个 Beta

Ubuntu 17.10 “Artful Aardvark” 首个 Beta 版已发布。 按照 Ubuntu 17.10 的发布日程 &#xff0c;Ubuntu 17.10 首个 beta 版按时发布了。不过参与本次测试版的没有 Ubuntu 官方风味版本&#xff08;要尝试的话可以考虑每日构建 ISO&#xff09;&#xff0c;包括了 Kubunt…

MySQL学习day02

一、SQL通用语法 1&#xff09;SQL语句可以单行或多行书写&#xff0c;以分号结尾 2&#xff09;SQL语句可以使用空格/缩进来增强语句的可读性 3&#xff09;MySQL数据库的SQL语句不区分大小写&#xff0c;关键字建议使用大写 4&#xff09;注释&#xff1a; a)单行注释&#x…

Day30力扣打卡

打卡记录 最长回文子序列&#xff08;区间DP&#xff09; 链接 class Solution:def longestPalindromeSubseq(self, s: str) -> int:n len(s)f [[0] * n for _ in range(n)]max lambda x, y: x if x > y else yfor i in range(n - 1, -1, -1):f[i][i] 1for j in ra…

leetcode二分查找算法题

目录 1.二分查找2.在排序数组中查找元素的第一个和最后一个位置3.x的平方根4.搜索插入位置5.山脉数组的峰顶索引6. 寻找峰值7.寻找旋转排序数组中的最小值8.8.0~n-1中缺失的数字 1.二分查找 二分查找 class Solution { public:int search(vector<int>& nums, int …

掉瓶子小游戏

欢迎来到程序小院 掉瓶子 玩法&#xff1a;旋转的瓶子&#xff0c;根据瓶子方向&#xff0c;点击鼠标左键瓶子掉落&#xff0c;从桌面中间掉下即得1分&#xff0c;卡在桌边瓶子碎了游戏结束&#xff0c;快去掉瓶子吧^^。开始游戏https://www.ormcc.com/play/gameStart/203 htm…

第1关:简单查询

任务描述相关知识 检索数据表的内容编程要求测试说明 任务描述 本关任务&#xff1a; 用 SELECT 语句检索数据表中指定字段的数据&#xff1b; 用 SELECT 语句检索数据表中所有字段的数据。 相关知识 为了完成本关任务&#xff0c;你需要掌握&#xff1a;1.如何获取数据表…