(四)七种元启发算法(DBO、LO、SWO、COA、LSO、KOA、GRO)求解无人机路径规划MATLAB

news2024/11/18 17:41:38

一、七种算法(DBO、LO、SWO、COA、LSO、KOA、GRO)简介

1、蜣螂优化算法DBO

蜣螂优化算法(Dung beetle optimizer,DBO)由Jiankai Xue和Bo Shen于2022年提出,该算法主要受蜣螂的滚球、跳舞、觅食、偷窃和繁殖行为的启发所得。【精选】单目标优化:蜣螂优化算法(Dung beetle optimizer,DBO)_蜣螂算法_IT猿手的博客-CSDN博客

参考文献:Xue, J., Shen, B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization. J Supercomput (2022). Dung beetle optimizer: a new meta-heuristic algorithm for global optimization | SpringerLink

2、狐猴优化算法LO

狐猴优化算法(Lemurs Optimizer,LO)由Ammar Kamal Abasi等人于2022年提出,该算法模拟狐猴的跳跃和跳舞行为,具有结构简单,思路新颖,搜索速度快等优势。单目标应用:基于狐猴优化算法(Lemurs Optimizer,LO)的微电网优化调度MATLAB_IT猿手的博客-CSDN博客

参考文献:

[1]Abasi AK, Makhadmeh SN, Al-Betar MA, Alomari OA, Awadallah MA, Alyasseri ZAA, Doush IA, Elnagar A, Alkhammash EH, Hadjouni M. Lemurs Optimizer: A New Metaheuristic Algorithm for Global Optimization. Applied Sciences. 2022; 12(19):10057. Applied Sciences | Free Full-Text | Lemurs Optimizer: A New Metaheuristic Algorithm for Global Optimization

3、蜘蛛蜂优化算法SWO

蜘蛛蜂优化算法(Spider wasp optimizer,SWO)由Mohamed Abdel-Basset等人于2023年提出,该算法模型雌性蜘蛛蜂的狩猎、筑巢和交配行为,具有搜索速度快,求解精度高的优势。VRPTW(MATLAB):蜘蛛蜂优化算法SWO求解带时间窗的车辆路径问题VRPTW(提供参考文献及MATLAB代码)-CSDN博客

参考文献:

[1]Abdel-Basset, M., Mohamed, R., Jameel, M. et al. Spider wasp optimizer: a novel meta-heuristic optimization algorithm. Artif Intell Rev (2023). Spider wasp optimizer: a novel meta-heuristic optimization algorithm | SpringerLink

4、小龙虾优化算法COA

小龙虾优化算法(Crayfsh optimization algorithm,COA)由Jia Heming 等人于2023年提出,该算法模拟小龙虾的避暑、竞争和觅食行为,具有搜索速度快,搜索能力强,能够有效平衡全局搜索和局部搜索的能力。多目标优化算法:基于非支配排序的小龙虾优化算法(NSCOA)MATLAB_IT猿手的博客-CSDN博客

参考文献:

[1] Jia, H., Rao, H., Wen, C. et al. Crayfish optimization algorithm. Artif Intell Rev (2023). Crayfish optimization algorithm | SpringerLink

5、光谱优化算法LSO

光谱优化算法(Light Spectrum Optimizer,LSO)由Mohamed Abdel-Basset等人于2022年提出。MD-MTSP:光谱优化算法LSO求解多仓库多旅行商问题MATLAB(可更改数据集,旅行商的数量和起点)_IT猿手的博客-CSDN博客

参考文献:

[1]Abdel-Basset M, Mohamed R, Sallam KM, Chakrabortty RK. Light Spectrum Optimizer: A Novel Physics-Inspired Metaheuristic Optimization Algorithm. Mathematics. 2022; 10(19):3466. Mathematics | Free Full-Text | Light Spectrum Optimizer: A Novel Physics-Inspired Metaheuristic Optimization Algorithm

6、开普勒优化算法KOA

开普勒优化算法(Kepler optimization algorithm,KOA)由Mohamed Abdel-Basset等人于2023年提出。五种最新优化算法(SWO、ZOA、EVO、KOA、GRO)求解23个基准测试函数(含参考文献及MATLAB代码)_swo算法_IT猿手的博客-CSDN博客

参考文献:

Mohamed Abdel-Basset, Reda Mohamed, Shaimaa A. Abdel Azeem, Mohammed Jameel, Mohamed Abouhawwash, Kepler optimization algorithm: A new metaheuristic algorithm inspired by Kepler’s laws of planetary motion, Knowledge-Based Systems, 2023. DOI: Redirecting

7、淘金优化算法GRO

淘金优化算法(Gold rush optimizer,GRO)由Kamran Zolf于2023年提出,其灵感来自淘金热,模拟淘金者进行黄金勘探行为。VRPTW(MATLAB):淘金优化算法GRO求解带时间窗的车辆路径问题VRPTW(提供参考文献及MATLAB代码)-CSDN博客

参考文献:

K. Zolfi. Gold rush optimizer: A new population-based metaheuristic algorithm. Operations Research and Decisions 2023: 33(1), 113-150. DOI 10.37190/ord230108

二、模型简介

单个无人机三维路径规划问题及其建模_IT猿手的博客-CSDN博客

参考文献:

[1]胡观凯,钟建华,李永正,黎万洪.基于IPSO-GA算法的无人机三维路径规划[J].现代电子技术,2023,46(07):115-120

三、DBO、LO、SWO、COA、LSO、KOA、GRO求解无人机路径规划

(1)部分代码

close all
clear  
clc
、warning off;
%% 三维路径规划模型定义
global startPos goalPos N
N=2;%待优化点的个数(可以修改)
startPos = [10, 10, 80]; %起点(可以修改)
goalPos = [80, 90, 150]; %终点(可以修改)
SearchAgents_no=30; % 种群大小(可以修改)
Function_name='F1'; %F1:随机产生地图 F2:导入固定地图
Max_iteration=100; %最大迭代次数(可以修改)
% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
AlgorithmName={'DBO','LO','SWO','COA','LSO','KOA','GRO'};%算法名称
addpath('./AlgorithmCode/')%添加算法路径
bestFit=[];%保存各算法的最优适应度值
for i=1:size(AlgorithmName,2)%遍历每个算法,依次求解当前问题
Algorithm=str2func(AlgorithmName{i});%获取当前算法名称,并将字符转换为函数
[Best_score,Best_pos,Convergence_curve]=Algorithm(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);%当前算法求解
%将当前算法求解结果放入data中
data(i).Best_score=Best_score;%保存该算法的Best_score到data
data(i).Best_pos=Best_pos;%保存该算法的Best_pos到data
data(i).Convergence_curve=Convergence_curve;%保存该算法的Convergence_curve到data
bestFit=[bestFit data(i).Best_score];
end

%%  画各算法的直方图
figure 
bar(bestFit)
ylabel('无人机飞行路径长度');
set(gca,'xtick',1:1:size(AlgorithmName,2));
set(gca,'XTickLabel',AlgorithmName)
saveas(gcf,'./Picture/直方图.jpg') %将图片保存到Picture文件夹下面


%%  画收敛曲线
strColor={'r-','g-','b-','k-','m-','c-','y-'};
figure
for i=1:size(data,2)
plot(data(i).Convergence_curve,strColor{i},'linewidth',1.5)%semilogy
hold on
end
xlabel('迭代次数');
ylabel('无人机飞行路径长度');
legend(AlgorithmName,'Location','Best')
saveas(gcf,'./Picture/收敛曲线.jpg') %将图片保存到Picture文件夹下面


%% 显示三维图并保存
path=plotFigure(data,AlgorithmName,strColor);%path是各算法求解的无人机路径
saveas(gcf,'./Picture/路径曲线(三维).jpg') %将图片保存到Picture文件夹下面


%% 显示二维图并保存
view(2)
saveas(gcf,'./Picture/路径曲线(二维).jpg') %将图片保存到Picture文件夹下面

(2)部分结果

四、完整MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1204805.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Outlook如何精准搜索邮件

说明: 使用Outlook默认的搜索时,会出来很多无关的信息,对搜索邮件带来很大的不便,下面介绍一个使用精准搜索的方法。 操作指引: 1、在outlook左上角,进行如下操作,打开“其他命令” 2、打开快…

UBoot

uboot是什么? 嵌入式linux系统启动过程 嵌入式系统上电后先执行uboot、然后uboot负责初始化DDR,初始化Flash,然后将OS从Flash中读取到DDR中,然后启动OS(OS启动后uboot就无用了)uboot是什么,ubo…

【Java】集合(二)Set

1.Set接口基本介绍 无序:存取顺序不一致不重复:可以去除重复无索引:没有带索引的方法,所以不能使用普通for循环遍历,也不能通过索引来获取元素 2.Set集合的实现类 HashSet:无序、不重复、无索引LinkedHashSet: 有序、不重复、无索引TreeSet: 可排序、不…

3、Linux库的生成和使用(核心代码是程序员不可公开的小秘密)

目录 Linux库的概念 Linux 静态库 Linux 静态库作用 Linux 静态库的创建 1. 将.c文件生成.o文件 ​编辑 2. 将所有的.o文件归档为一个静态库.a文件 Linux 静态库的使用 Linux 动态库: Linux 动态库作用 Linux 动态库的创建 生成.so动态库文件 ​编辑 …

推荐一份适合所有人做的副业,尤其是程序员。

我建议每个人都去尝试一下网上接单,这是一个门槛低、类型多样的方式,尤其适合程序员! 在接单平台上,你可以看到各种类型的兼职。以freelancer为例,你可以在这里找到技术、设计、写作等类型的兼职,只要发挥…

广告算法资料汇总【建设中】

业内大佬 阿里妈妈技术 张俊林 王喆 萧瑟 朱小强 综合 付海军:基于互联网广告发展演变和思考(附视频讲解PPT) 广告算法工程师入门_广告与算法的博客-CSDN博客 广告算法学习笔记 20万、50万、100万的算法工程师,到底有什么区别…

EtherCAT转Modbus网关的 EtherCAT从站配置案例

兴达易控EtherCAT转Modbus网关(XD-MDEC20 )是一款具备ETHERCAT从站功能的通讯网关,其主要作用是将ETHERCAT网络和MODBUS-RTU网络连接起来。该网关可作为ETHERCAT总线中的从站使用,同时也能够连接到MODBUS-RTU总线中,作…

upload-labs关卡4(黑名单点空格绕过或htaccess绕过)通关思路

文章目录 前言一、回顾上一关知识点二、靶场第四关方法一通关思路1.看源码2、点空格绕过 三、靶场第四关方法二通关思路1、htaccess文件是什么2、通过上传htaccess文件进行绕过1、使用前提2、上传htaccess文件,然后再上传phpinfo的jpg文件 总结 前言 此文章只用于学…

轻量封装WebGPU渲染系统示例<29>- 深度模糊DepthBlur(源码)

当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/rendering/src/voxgpu/sample/DepthBlur.ts 当前示例运行效果: 此示例基于此渲染系统实现,当前示例TypeScript源码如下: const blurRTTTex0 { diffuse: { uuid: "rtt0", …

数据结构-堆排序及其复杂度计算

目录 1.堆排序 1.1 向上调整建堆 1.2 向下调整建堆 2. 两种建堆方式的时间复杂度比较 2.1 向下调整建堆的时间复杂度 2.2 向上调整建堆的时间复杂度 Topk问题 上节内容,我们讲了堆的实现,同时还包含了向上调整法和向下调整法,最后我们…

为什么要安装田间气象站?

随着农业科技的发展,越来越多的农民朋友开始关注如何利用科技手段来提高农业生产效益。其中,安装田间气象站成为了许多农民朋友的选择之一,为什么会有这种情况呢?安装田间气象站会带来哪些优势呢? 一、了解气候变化 气…

Vue3问题:如何实现页面引导提示?

前端功能问题系列文章,点击上方合集↑ 序言 大家好,我是大澈! 本文约1700字,整篇阅读大约需要3分钟。 本文主要内容分三部分,第一部分是需求分析,第二部分是实现步骤,第三部分是问题详解。 …

No194.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

C语言--假设共有鸡、兔30只,脚90只,求鸡、兔各有多少只​

一.题目描述 假设共有鸡、兔30只,脚90只,求鸡、兔各有多少只? 二.思路分析 本题是一个典型的穷举法例题,而穷举法,最重要的就是条件判断。⭐⭐ 本题中的条件很容易发现: 假设鸡有x只,兔有y只…

【C++类和对象下:解锁面向对象编程的奇妙世界】

【本节目标】 1. 再谈构造函数 2. Static成员 3. 友元 4. 内部类 5.匿名对象 6.拷贝对象时的一些编译器优化 7. 再次理解封装 1. 再谈构造函数 1.1 构造函数体赋值 在创建对象时,编译器通过调用构造函数,给对象中各个成员变量一个合适的初始值。…

Matlab论文插图绘制模板第126期—分组三维气泡图

在之前的文章中,分享了Matlab三维气泡图的绘制模板: 特征渲染的三维气泡图: 进一步,再来分享一下分组三维气泡图。 先来看一下成品效果: 特别提示:本期内容『数据代码』已上传资源群中,加群的朋…

java8函数式编程(Lambda表达式,Optional,Stream流)从入门到精通

文章目录 函数式编程Lambda表达式Stream流创建流中间操作终结操作注意事项 Optional创建对象消费值获取值过滤判断数据转换 方法引用高级用法基本数据类型优化并行流 函数式编程 不关心具体的对象,只关心数据参数和 具体操作 Lambda表达式 格式: () -&…

基于缎蓝园丁鸟算法优化概率神经网络PNN的分类预测 - 附代码

基于缎蓝园丁鸟算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于缎蓝园丁鸟算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于缎蓝园丁鸟优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针…

css3 初步了解

1、css3的含义及简介 简而言之,css3 就是 css的最新标准,使用css3都要遵循这个标准,CSS3 已完全向后兼容,所以你就不必改变现有的设计, 2、一些比较重要的css3 模块 选择器 1、标签选择器,也称为元素选择…

C++算法: 最大化数组末位元素的最少操作次数

涉及知识点 数学 题目 给你两个下标从 0 开始的整数数组 nums1 和 nums2 ,这两个数组的长度都是 n 。 你可以执行一系列 操作(可能不执行)。 在每次操作中,你可以选择一个在范围 [0, n - 1] 内的下标 i ,并交换 num…