第28章_mysql缓存策略

news2024/12/25 17:23:11

文章目录

  • MySQL缓存方案目的分析
    • 缓存层作用
      • 举例
    • 缓存方案选择
    • 场景分析
  • 提升MySQL访问性能的方式
    • MySQL主从复制
    • 读写分离
    • 连接池
    • 异步连接
  • 缓存方案
    • 缓存和MySQL一致性状态分析
    • 制定读写策略
  • 同步方案
    • canal
    • go-mysql-transfer
  • 缓存方案的故障问题及解决
    • 缓存穿透
    • 缓存击穿
    • 缓存雪崩
    • 缓存方案的弊端
  • 总结

前提:读多写少,单个主节点能支撑项目数据量;数据的主要依据是mysql。

MySQL缓存方案目的分析

mysql 有自己缓冲层,它的作用也是用来缓存热点数据,这些数据包括索引、记录等。mysql 缓冲层是从自身出发,跟具体的业务无关。这里的缓冲策略主要是 lru。

mysql 数据主要存储在磁盘当中,适合大量重要数据的存储;磁盘当中的数据一般是远大于内存当中的数据。

一般业务场景的关系型数据库(mysql)是作为主要数据库的。

缓存层作用

MySQL缓存方案用来缓存用户定义的热点数据,用户直接从缓存获取热点数据,降低数据库的读写压力。

举例

比如说12点有一个促销活动,用户可以在12点之前预约,则12点之前预约的用户可称为热点数据,到12点的时候会有大量用户登录,这将对mysql造成很大压力,所以需要提前缓存预约的用户数据,因为mysql自带的缓存不适合用户定义的热点数据。此时可以考虑使用redis来缓存预约的用户数据,并且需要设置过期时间,因为12点之后可能过1小时活动就结束了,所以考虑过期时长为13:00 - 预约的时间。

缓存方案选择

缓存数据库可以选用 redis,memcached;它们所有数据都存储在内存当中,当然也可以将内存当中的数据持久化到磁盘当中。

场景分析

(1)内存访问速度是磁盘访问速度10W倍,访问磁盘的速度比较慢,尽量使获取数据是从内存中获取。

(2)读的需求远远大于写的需求。主要解决读的性能;因为写没必要优化,必须让数据正确的落盘。如果写性能出现问题,那么请使用横向扩展集群方式来解决

(3)MySQL自身缓冲层跟业务无关。由于 mysql 的缓冲层不由用户来控制,也就是不能由用户来控制缓存具体数据

(4)MySQL作为项目主要数据库,便于统计分析。项目中需要存储的数据应该远大于内存的容量,同时需要进行数据统计分析,所以数据存储获取的依据应该是关系型数据库。

(5)缓存数据库作为辅助数据库,存放热点数据。缓存数据库可以存储用户自定义的热点数据。

提升MySQL访问性能的方式

(1)读写分离

(2)连接池

(3)异步连接

(4)预处理。

(5)更换存储引擎。

(6)分库分表。(淘汰的技术)

(7)mycat。(淘汰的技术)

(8)tidb。

MySQL主从复制

在这里插入图片描述

  1. 主库更新事件 ( update、insert、delete ) 通过 io-thread写到 binlog。

  2. 从库请求读取 binlog,通过 io-thread 写入从库本地 relay log(中继日志)。

  3. 从库通过 sql-thread 读取 relay-log,并把更新事件在从库中重放(replay)一遍。

复制流程:

  1. Slave 上面的 IO 线程连接上 Master,并请求从指定日志文件的指定位置(或者从最开始的日志)之后的日志内容。
  2. Master 接收到来自 Slave 的 IO 线程的请求后,负责复制的IO 线程会根据请求信息读取日志指定位置之后的日志信息,返回给 Slave 的 IO 线程。返回信息中除了日志所包含的信息之外,还包括本次返回的信息已经到 Master 端的 binlog 文件的名称以及 binlog 的位置。
  3. Slave 的 IO 线程接收到信息后,将接收到的日志内容依次添加到 Slave 端的 relay-log 文件的最末端,并将读取到的Master 端的 binlog 的文件名和位置记录到master-info 文件中,以便在下一次读取的时候能够清楚的告诉 Master 从何处开始读取日志。
  4. Slave 的 sql 进程检测到 relay-log 中新增加了内容后,会马上解析 relay-log 的内容成为在 Master 端真实执行时候的那些可执行的内容,并在自身执行。

由于MySQL的主从复制是异步的,所以同一时刻主数据库和从数据库的数据可能存在不一致的现象,这就造成可能从数据库中读取的数据不是最新的。

读写分离

在这里插入图片描述
读写分离会设置多个从数据库,从数据库可能会在多个机器中。

写操作依然在主数据库中,主数据库提供数据的主要依据。

读写分离通过设置多个从数据库解决读压力。

读写分离主要依据MySQL的主从复制原理,因为MySQL的主从复制是异步复制的,所以读写分离只能保证数据的最终一致性,不能保证实时一致性。

如果读操作有强一致性要求,那么需要读操作去读主数据库。

连接池

连接池的定义:在服务端当中创建多个与数据库的连接线程。

解决的问题:并发提升数据库访问性能;同时复用连接,避免连接建立、断开依据安全验证的开销。

原理:利用MySQL的网络模型创建多个连接,每个连接复用去处理SQL语句。值得注意的是,如果发送一个事务(多条SQL语句),这个事务必须要在一个连接里面完成。

连接池具体内容请见mysql连接池

异步连接

在服务端创建一个连接,针对这个连接采用非阻塞IO。这种方式可以节省网络传输时间。

缓存方案

缓存和MySQL一致性状态分析

没有缓冲层之前,对数据的读写都是基于 mysql;所以不存在同步问题;这句话也不是必然,比如读写分离就存在同步问题(数据一致性问题)。

引入缓冲层后,对数据的获取需要分别操作缓存数据库和mysql,那么这个时候数据可能存在以下状态:
在这里插入图片描述
4 和 5显然是没问题的,现在需要考虑1、2以及3。

首先明确一点:获取数据的主要依据是 mysql,只需要将mysql 的数据正确同步到缓存数据库就可以了。

同理,缓存有,mysql 没有,这比较危险,此时可以认为该数据为脏数据;所以需要在同步策略中避免该情况发生同时可能存在mysql 和缓存都有数据,但是数据不一致,这种也需要在同步策略中避免

注意:以MySQL为主,保证缓存不可用,整个系统依然要保持正常工作;mysql 不可用的话,系统停摆,停止对外提供服务。

制定读写策略

在这里插入图片描述
读策略:先读缓存,若缓存有,直接返回;若缓存没有,读mysql;若 mysql 有,同步到缓存,并返回;若 mysql 没有,则返回没有。

写策略:从安全优先方面考虑;先删除缓存,再写 mysql,后面数据同步交由 go-mysql-transfer 等中间件处理(将问题 3 转化成 1)。

先删除缓存,为了避免其他服务读取旧的数据;也是告知系统这个数据已经不是最新,建议从 mysql 获取数据。但是对于服务 A 而言,写入 mysql 后,接着读操作必须要能读到最新的数据。
在这里插入图片描述
写策略:从效率优先方面考虑;先写缓存,并设置过期时间(如 200ms),再写mysql,后面数据同步交由其他中间件处理。

这里设置的过期时间是预估时间,大致上是 mysql 到缓存同步的时间。在写的过程中如果 mysql 停止服务,或数据没写入 mysql,则200 ms 内提供了脏数据服务;但仅仅只有 200ms 的数据错乱,即效率优先的写策略也有安全性的问题,但只会影响200ms。
在这里插入图片描述

同步方案

同步方案可以有:

(1)伪装从数据库。比如阿里开源的canal方案、kafka、go-mysql-transfer等。

(2)MySQL的触发器+udf。udf全称User-defined function,是MySQL提供的一种可扩展代码。UDF不具备事务,不能回滚;而且效率较低。

canal

canal会考虑分布式问题,如果一个canal宕机了,会有从canal顶替上来,保证服务正常提供。
在这里插入图片描述

go-mysql-transfer

go-mysql-transfer是一个基于Go语言开发的数据库变更数据传输工具,它可以实时捕获MySQL数据库中的数据变更,并将变更事件传输到给redis等缓存数据库。go-mysql-transfer只有一个节点,相对canal简单些,没有解决分布式问题。

缺点是需要引入etcd、zk等实现高可用。

具体流程是:
1)安装 go-mysql-transfer

# 安装 Golang 1.14 及以上版本
wget https://golang.google.cn/dl/go1.17.8.linux-amd64.tar.gz
tar -zxvf go1.17.8.linux-amd64.tar.gz
# 配置
vim /etc/profile
export PATH=$PATH:/opt/go/bin  # 配置 go 环境变量

# 安装 go-mysql-transfer
git clone https://gitee.com/mirrors/go-mysql-transfer.git
GO111MODULE=on
go env -w GOPROXY=https://goproxy.cn,direct
go build

2)修改 mysql 配置文件为主从模式,位置:/etc/mysql/my.cnf

log-bin=mysql-bin # 开启 binlog
binlog-format=ROW # 选择 ROW 模式
server_id=1 # 配置 MySQL replaction 需要定义,不要和slave_id重复

3)修改 app.yml,配置 mysql 和 redis,配置热点数据

#规则配置
rule:
  -
    schema: eseap #数据库名称
    table: t_user #表名称
    #order_by_column: id #排序字段,存量数据同步时不能为空
    #column_lower_case:false #列名称转为小写,默认为false
    #column_upper_case:false#列名称转为大写,默认为false
    column_underscore_to_camel: true #列名称下划线转驼峰,默认为false
    # 包含的列,多值逗号分隔,如:id,name,age,area_id  为空时表示包含全部列
    #include_columns: ID,USER_NAME,PASSWORD
    #exclude_columns: BIRTHDAY,MOBIE # 排除掉的列,多值逗号分隔,如:id,name,age,area_id  默认为空
    #column_mappings: USER_NAME=account    #列名称映射,多个映射关系用逗号分隔,如:USER_NAME=account 表示将字段名USER_NAME映射为account
    #default_column_values: area_name=合肥  #默认的列-值,多个用逗号分隔,如:source=binlog,area_name=合肥
    #date_formatter: yyyy-MM-dd #date类型格式化, 不填写默认yyyy-MM-dd
    #datetime_formatter: yyyy-MM-dd HH:mm:ss #datetime、timestamp类型格式化,不填写默认yyyy-MM-dd HH:mm:ss
    #lua_file_path: lua/t_user.lua   #lua脚本文件
    #lua_script:   #lua 脚本
    value_encoder: json  #值编码,支持json、kv-commas、v-commas;默认为json
    #value_formatter: '{{.ID}}|{{.USER_NAME}}' # 值格式化表达式,如:{{.ID}}|{{.USER_NAME}},{{.ID}}表示ID字段的值、{{.USER_NAME}}表示USER_NAME字段的值

    #redis相关
    redis_structure: string # 数据类型。 支持string、hash、list、set、sortedset类型(与redis的数据类型一致)
    #redis_key_prefix: USER_ #key的前缀
    #redis_key_column: USER_NAME #使用哪个列的值作为key,不填写默认使用主键
    #redis_key_formatter: '{{.ID}}|{{.USER_NAME}}'
    #redis_key_value: user #KEY的值(固定值);当redis_structure为hash、list、set、sortedset此值不能为空
    #redis_hash_field_prefix: _CARD_ #hash的field前缀,仅redis_structure为hash时起作用
    #redis_hash_field_column: Cert_No #使用哪个列的值作为hash的field,仅redis_structure为hash时起作用,不填写默认使用主键
    #redis_sorted_set_score_column: id #sortedset的score,当数据类型为sortedset时,此项不能为空,此项的值应为数字类型

    #mongodb相关
    #mongodb_database: transfer #mongodb database不能为空
    #mongodb_collection: transfer_test_topic #mongodb collection,可以为空,默认使用表名称

    #elasticsearch相关
    #es_index: user_index #Index名称,可以为空,默认使用表(Table)名称
    #es_mappings: #索引映射,可以为空,为空时根据数据类型自行推导ES推导
    #  -
    #    column: REMARK #数据库列名称
    #    field: remark #映射后的ES字段名称
    #    type: text #ES字段类型
    #    analyzer: ik_smart #ES分词器,type为text此项有意义
    #    #format: #日期格式,type为date此项有意义
    #  -
    #    column: USER_NAME #数据库列名称
    #    field: account #映射后的ES字段名称
    #    type: keyword #ES字段类型

    #rocketmq相关
    #rocketmq_topic: transfer_test_topic #rocketmq topic,可以为空,默认使用表名称

    #kafka相关
    #kafka_topic: user_topic #rocketmq topic,可以为空,默认使用表名称

    #rabbitmq相关
    #rabbitmq_queue: user_topic #queue名称,可以为空,默认使用表(Table)名称

    #reserve_raw_data: true #保留update之前的数据,针对rocketmq、kafka、rabbitmq有用;默认为false

4)编写 Lua 同步逻辑

local ops = require("redisOps") --加载redis操作模块

local row = ops.rawRow()  --当前数据库的一行数据,table类型,key为列名称
local action = ops.rawAction()  --当前数据库事件,包括:insert、update、delete

-- 同步方法
if action == "insert" or action == "update" then -- 只监听insert事件
    local id = row["id"] --获取ID列的值
    local key = "user:" .. id
    local name = row["nick"] --获取USER_NAME列的值
    local sex = row["sex"]
    local height = row["height"] --获取PASSWORD列的值
    local age = row["age"]
    ops.HSET(key, "id", id) -- 对应Redis的HSET命令
    ops.HSET(key, "nick", name) -- 对应Redis的HSET命令
    ops.HSET(key, "sex", sex) -- 对应Redis的HSET命令
    ops.HSET(key, "height", height) -- 对应Redis的HSET命令
    ops.HSET(key, "age", age) -- 对应Redis的HSET命令
elseif action == "delete" then
    local id = row['id']
    local key = "user:" .. id
    ops.DEL(key)
end

5)启动 mysql, redis, go-mysql-transfer

# 全量数据同步,初次启动
./go-mysql-transfer -stock
# 启动
nohup go-mysql-transfer &

缓存方案的故障问题及解决

缓存穿透

如果某个数据在redis缓存和MySQL中都不存在,但此时一直尝试读这个不存在的数据,最后数据压力堆积在MySQL,可能会造成MySQL崩溃。

例如恶意攻击者可以通过构造大量不存在的查询请求来压垮数据库。

解决办法:
1)缓存设置<key,nil>:当发现MySQL不存在某个数据,将redis中对应的key设置为<key,nil>并设置过期时间。通过这样的标识,使得下次访问key的时候不要再去访问MySQL,并且到期自动删除这个key。但是这种方法会造成redis缓存数据库缓存很多无效数据,浪费内存。

2)部署布隆过滤器:将 MySQL当中已经存在的 key,写入布隆过滤器,不存在的直接 pass 掉。即使发生了缓存穿透,通过布隆过滤器在缓存层(即布隆过滤器部署在redis层,这样就不用在多个服务端都部署了)拦截无效的请求,避免无效查询到达MySQL。最好在缓存数据库上部署布隆过滤器。

缓存击穿

如果某个频繁访问的热点数据在redis缓存不存在(过期或被淘汰),但在MySQL中存在。此时有大量的并发连接请求该热点数据,会直接访问数据库,导致MySQL数据库压力骤增,可能造成MySQL数据库崩溃

解决方案:
1)过热数据不过期,即不要对频繁访问的热点数据设置过期时间。
2)分布式锁。请求数据的时候获取锁,若获取成功,则操作后释放锁;若获取失败,则休眠一段时间(200ms)再去获取,当获取成功,操作后释放锁。

缓存雪崩

redis缓存中的大量数据同时过期或失效,但是在MySQL中存在,导致大量请求直接访问MySQL数据库,造成系统性能下降甚至崩溃。

缓存数据库在整个系统不是必须的,也就是缓存宕机不会影响整个系统提供服务。

解决办法:

1)如果因为缓存数据库宕机,造成所有数据涌向 MySQL。采用高可用的集群方案,如哨兵模式、cluster模式。

2)如果因为设置了相同的过期时间,造成缓存集中失效。设置随机过期值或者其他机制错开失效时间。

3) 如果因为系统重启的时候,造成缓存数据消失。重启时间短,redis 开启持久化(过期信息也会持久化)就行了; 重启时间长,提前将热数据导入 redis 当中。

缓存方案的弊端

不能处理多语句事务。这是因为redis缓存数据库不支持回滚,造成redis 缓存数据库 与MySQL存储数据库数据不一致。

总结

  1. binlog的作用是数据备份和主从复制;确保主从数据的一致。
  2. redolog的作用是确保事务持久化,确保本地数据一致。
  3. 缓存方案读策略:先读缓存,存在则直接返回;不存在则去访问MySQL,再写redis。
  4. 缓存方案写策略,从安全为主;先删除缓存层中对应数据,再写MySQL,最后将MySQL数据同步到缓存层。添加缓存层的目的是为了提升效率,这种方式为了安全降低了效率。
  5. 缓存方案写策略,从效率为主;先写缓存层并设置过期时间,再写MySQL,等待MySQL同步到缓存层中。过期时间=MySQL网络传输时间+MySQL处理时间。
  6. 缓存穿透的解决方法有:缓存设置 <key,nil>,告诉服务器mysql也没有数据,不用去访问mysql了;部署布隆过滤器。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1204485.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于Python+Django的寻人失物失物招领系统

运行环境 开发语言&#xff1a;Python python框架&#xff1a;django 软件版本&#xff1a;python3.7 数据库&#xff1a;mysql 5.7 数据库工具&#xff1a;Navicat11 开发软件&#xff1a;PyCharm/vscode 前端框架:vue.js 项目介绍 寻人失物失物招领系统交流平台的主要使用…

【chatglm3】(3):在AutoDL上,使用4090显卡,部署ChatGLM3API服务,并微调AdvertiseGen数据集,完成微调并测试成功!附视频演示。

在AutoDL上&#xff0c;使用4090显卡&#xff0c;部署ChatGLM3API服务&#xff0c;并微调AdvertiseGen数据集&#xff0c;完成微调并测试成功&#xff01; 其他chatgpt 和chatglm3 资料&#xff1a; https://blog.csdn.net/freewebsys/category_12270092.html 视频地址&#…

傅里叶分析(2)

在《傅里叶分析&#xff08;1&#xff09;》中&#xff0c;讲述了连续信号的傅里叶分析方法&#xff0c;本文讲述离散信号的傅里叶分析方法。 虽然电、声、光、机械振动等信号在物理上是连续函数&#xff0c;但在实际工程中&#xff0c;其通常为离散信号&#xff0c;即若干离散…

Go的优雅退出

Go优雅退出/停机以前主要通过signal来实现&#xff0c;当然现在也是通过signal来实现&#xff0c;只是从go 1.16开始&#xff0c;新增了更加友好的API: func NotifyContext(parent context.Context, signals ...os.Signal) (ctx context.Context, stop context.CancelFunc) 该…

2017年计网408

第33题 假设 OSI 参考模型的应用层欲发送 400B 的数据 (无拆分), 除物理层和应用层之外, 其他各层在封装 PDU 时均引入 20 B 的额外开销, 则应用层数据传输效率约为( )A. 80%B. 83%C. 87%D. 91% 本题考察有关数据包逐层封装的相关概念。我们来一起分析一下。 这是要求大家必须…

国际化:i18n

什么是国际化&#xff1f; 国际化也称作i18n&#xff0c;其来源是英文单词 internationalization的首末字符和n&#xff0c;18为中间的字符数。由于软件发行可能面向多个国家&#xff0c;对于不同国家的用户&#xff0c;软件显示不同语言的过程就是国际化。通常来讲&#xff0…

gradle 使用记录

gradle 使用记录 下载与设置android studio 配置 参考 IDEA如何配置 Gradle 及 Gradle 安装过程&#xff08;详细版&#xff09; 设置Gradle国内镜像并配置本地仓库地址 下载与设置 腾讯镜像下载 比如gradle-8.4-bin.zip 新建环境变量 GRADLE_HOME 为 D:\java\gradle &#…

基于springboot+vue健身管理系统

基于springbootvue健身管理系统 摘要 健身管理系统是一款基于Spring Boot和Vue.js的全栈应用&#xff0c;致力于为用户提供全面、个性化的健身管理体验。通过Spring Boot构建的后端&#xff0c;系统提供了强大的RESTful API支持&#xff0c;包括用户管理、健身计划制定和健康数…

Python数据容器之[列表]

Python数据容器 Python中的数据容器&#xff1a; 一种可以容纳多份数据的数据类型&#xff0c;容纳的每一份数据称之为1个元素 每一个元素&#xff0c;可以是任意类型的数据&#xff0c;如字符串、数字、布尔等。 数据容器根据特点的不同&#xff0c;如&#xff1a; 是否支…

IDEA 2023搭建 SpringMVC +FreeMarker+JDBC

1.IDEA的版本&#xff0c;目前最新是2023&#xff0c;要选择旗舰版。笔者曾选择社区版&#xff0c;发现少了很多功能。只能重新安装。 2.安装好以后的第1件事&#xff0c;是设置Maven&#xff0c;并将下载地址改为淘定站&#xff0c;参照这篇一次包会——最新IDEA配置Maven指南…

Java 算法篇-深入了解单链表的反转(实现:用 5 种方式来具体实现)

&#x1f525;博客主页&#xff1a; 小扳_-CSDN博客 ❤感谢大家点赞&#x1f44d;收藏⭐评论✍ 文章目录 1.0 单链表的反转说明 2.0 单链表的创建 3.0 实现单链表反转的五种方法 3.1 实现单链表反转 - 循环复制&#xff08;迭代法&#xff09; 3.2 实现单链表反转 - 头插法 3…

飞书开发学习笔记(五)-Python快速开发网页应用

飞书开发学习笔记(五)-Python快速开发网页应用 一.下载示例代码 首先进入飞书开放平台: https://open.feishu.cn/app 凭证与基础信息 页面&#xff0c;在 应用凭证 中获取 App ID 和 App Secret 值。 教程和示例代码位置:https://open.feishu.cn/document/home/integrating-…

YOLOv5算法进阶改进(2)— 引入可变形卷积模块 | 涨点杀器

前言:Hello大家好,我是小哥谈。可变形卷积模块是一种改进的卷积操作,它可以更好地适应物体的形状和尺寸,提高模型的鲁棒性。可变形卷积模块的实现方式是在标准卷积操作中增加一个偏移量offset,使卷积核能够在训练过程中扩展到更大的范围,从而实现对尺度、长宽比和旋转等各…

Linux_磁盘管理_df命令

1、df命令是用来干什么的 df的全称是disk free&#xff0c;意为“磁盘空间”。 使用df命令可以查看系统中磁盘的占用情况&#xff0c;有哪些文件系统&#xff0c;在什么位置&#xff08;挂载点&#xff09;&#xff0c;总空间&#xff0c;已使用空间&#xff0c;剩余空间等。…

2023.11.13【读书笔记】丨生物信息学与功能基因组学(第六章 多重序列比对 下)

目录 6.4 多重序列比对数据库6.5 基因组区域的多重序列比对6.6 展望6.7 常见问题总结 6.4 多重序列比对数据库 Pfam&#xff1a;基于谱隐马尔可夫模型构建的蛋白质家族数据库 SMART&#xff1a;简易分子构型研究工具&#xff0c;与细胞信号传导、细胞外结构域以及染色质功能…

Jmeter+ant+Jenkins持续集成

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试」资…

【C++入门篇】保姆级教程篇【下】

目录 一、运算符重载 1&#xff09;比较、赋值运算符重载 2&#xff09; 流插入留提取运算符重载 二、剩下的默认成员函数 1&#xff09;赋值运算符重载 2&#xff09;const成员函数 3&#xff09;取地址及const取地址操作符重载 三、再谈构造函数 1&#xff09;初始化列表 …

2023年数维杯国际大学生数学建模挑战赛A题

当大家面临着复杂的数学建模问题时&#xff0c;你是否曾经感到茫然无措&#xff1f;作为2022年美国大学生数学建模比赛的O奖得主&#xff0c;我为大家提供了一套优秀的解题思路&#xff0c;让你轻松应对各种难题。 cs数模团队在数维杯前为大家提供了许多资料的内容呀&#xff0…

java项目之公廉租房维保系统(ssm框架)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于ssm的公廉租房维保系统。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 项目简介&#xff1a; 一、业主管理功能 该部分内容提…

单电源供电的运放如何增加直流偏置

在一些单电源供电的运放电路中&#xff0c;输入信号可能是交流信号&#xff0c;有正也有负&#xff0c;如果输入信号直接接到运算放大电路&#xff0c;则运放不会输出负电压&#xff0c;只有正电压&#xff0c;从而不能实现信号的调理&#xff1b; 这时我们就需要给运放添加直流…