Cesium深入浅出之自定义材质

news2025/1/11 20:04:47

引子

做为一名技术宅却没有能拿得出手的技术无疑是最可悲的事情。三年前,当我第一次接触Cesium的时候就被它强大和炫丽所折服,最关键的是它还是开源的。以前我一直是机械地敲着业务代码,好像计算机程序就只能干这点事情一样,而 Cesium 就像打开了一扇窗,原来里面的世界如此精彩,原来计算机程序还可以变幻出如此多的花样来。于是,我好像找到了人生方向一般,如饥似渴地踏入了 Cesium 的殿堂。可能是因为以前从未接触过图形学,让我觉得 Cesium 里面涉及的知识都那么高深,那么玄奥,同时学习过程也是那么痛苦。然心向往之,故痛并快乐着。差不多半年有余,对 Cesium 算是初窥门径了,搭上一个框架,堆上一堆功能花架子,在当年也算很不错了。然而,Cesium 的核心技术是图形学,可以说想真正把 Cesium 学好,图形学是必经之路。如果Cesium是修真体系,那么图形学就是功法,而且是高阶功法,想入门都很困难,更遑论小成、大成,圆满更是不敢想象,这也是很多人被挡在门外或只能浅尝辄止的缘故。也是在那时萌生了深入浅出系列的想法,本意就是想大道化简,人人都得以修炼,于是我便开启了深入浅出之路。要说一开始还是挺顺利的,出产了几篇勉强过得去的修炼心得。可是后来因为陷入项目导致这条路中断了,长达两年之久。以至于后来与人交流的时候都明显感觉自己的技术跟不上了,毕竟在你懈怠的时候别人还在努力修炼。果然修炼一途如逆水行舟,不进则退。意识到自己再也不能这样下去了,所以再次捡起修炼。如果按修真的等级划分的话,我现在最多只能算练气期九层,甚至还没筑基!用仙界的话说:筑基之下皆是蝼蚁!艾玛,太恐怖了!不废话了,开始我们的筑基之路。

预期效果

今天要讲的是自定义材质,篇幅可能会很长,很有可能一次更新不完,因为想写的东西太多了,一次能更多少是多少吧。Cesium 的材质我们都很熟了,毕竟从入门开始就使用到材质。只不过通常我们使用的是 Cesium 自带的材质,当我们想实现一个稍微复杂点效果时自带的材质库就不够用了,这时候就该自定义材质登场了。我记得刚接触 Cesium 那会想做一个雷达扫描的效果,自己啥也不会,于是就到网上搜罗了一些案例。有的是使用 Entity 实现的,思路很简单,先在地图上画一个圆,然后贴上预先绘制好的一张静态的雷达图片做为材质,通过 CallbackProperty 的方式让图形旋转起来,这方法的弊端是需要图片资源,不够灵活。还有一种思路是用 PostProcessStage 实现的,这种方式在当时看起来就很高大上,不需要引入图片资源,而且还涉及到了当时的知识盲区 Shader,一堆glsl语言直接让我放弃研究,当起了大自然的搬运工,不过这种方式实现的有瑕疵,就是距离太近的时候雷达出现断层,想要优化也无能为力,只得放弃。其实现在想来,这个效果其实及其简单,只需一个自定义材质就能搞定。

实现原理

照例我们还是先了解一下 Cesium 的材质结构,上API。

构造函数

new Cesium.Material(options)

原文:A Material defines surface appearance through a combination of diffuse, specular, normal, emission, and alpha components. These values are specified using a JSON schema called Fabric which gets parsed and assembled into glsl shader code behind-the-scenes.

翻译:材质是用来定义一个表面外观的,主要是通过漫反射、镜面反射、 法线、自发光和 Alpha  这些分量。这些值是使用 Fabric 方式以 JSON 格式进行赋值的,它们在后台它被解析并组装成 glsl 着色器代码。

选项参数

名字类型描述
options对象可选 具有以下属性的对象:
名字类型默认值描述
strictbooleanfalse可选 严格模式。这种模式下,通常会被忽略的问题(如未使用的 uniforms 或  materials)将会引发错误。
translucentboolean | functiontrue可选 当值为 ture 或函数的返回值为 true 的时候 ,几何图形的材质半透明。
minificationFilterTetureMinificationFilterTextureMinificationFilter.LINEAR可选 纹理缩小筛选器。
magnificationFilterTetureMagnificationFilterTextureMagnificationFilter.LINEAR可选 纹理放大筛选器。
fabricObject用于生成材质的JSON。

成员

materials : object

Maps sub-material names to Material objects.

将子材质名称映射到材质对象。

shaderSource : string

The glsl shader source for this material.

此材质的glsl着色器源码。

translucent : boolean|function

When true or a function that returns true, the geometry is expected to appear translucent.

材质半透明。

type : string

The material type. Can be an existing type or a new type. If no type is specified in fabric, type is a GUID.

材质类型。可以是已存的类型也可以是新类型。如果 fabric 中未指定 type 值,则 type 值未一个 GUID 值。

uniforms : object

Maps uniform names to their values.

统一名称和值的映射。

方法

static Cesium.Material.fromType(type, uniforms) → Material

静态方法,根据类型获取材质。这里获取的是 Cesium 自带的材质,不过如果你将自定义的材质注册到 Cesium,理论上也是能获取到的。

destroy() → void

销毁材质。

isDestroyed() → boolean

返回材质是否已被销毁。如果一个材质可能被销毁了,那么调用材质之前最好先调用这个方法,否则会抛出异常。

isTranslucent() → boolean

返回材质是否为半透明。

以上就是 Material 的基本 API 了,还有一些自带材质类型的静态成员我就不列出来了,毕竟我们今天讲的是自定义材质。

网上看到有很多人写自定义类的时候喜欢二次改造,就是把 Cesium 某个类的源码拷贝过来,然后在上面一顿操作猛如虎,改造完之后连亲妈都不认得了,毕竟 Cesium 底层还是 ES5 时代的代码,那成品一出来我只能说是惨不忍睹。所以我们要善用 ES6 “类”的继承,这会让你的代码看起来更简洁,更易懂。来,上示例!

import {Color, Material} from 'cesium';

/**
 * 雷达扫描材质。
 *
 * @class
 * @author Helsing
 * @since 2023/11/10
 */
export class RadarScanCircleMaterial extends Material {
    /**
     * 构造雷达扫描材质。
     *
     * @param options 选项。
     * @constructor
     */
    constructor(options={}) {
        const newOptions = {
            fabric: {
                type: options.type || 'RadarScanCircle',
                uniforms: options.uniforms || {
                    radians: options.radians ?? 0.00,
                    color: options.color || new Color(0, 1, 1),
                    sectorColor: options.sectorColor || new Color(0, 1, 1),
                    time: options.time ?? 0.00,
                    count: options.count ?? 5.0,
                    gradient: options.gradient ?? 0.01,
                },
                source: options.shaderSource ?? '这里是你要写glsl的地方',
            },
            translucent: options.translucent ?? true,
        };
        super(newOptions);
    }
}

看吧,简简单单几行代码就完成了自定义材质的框架,接下来你只需要关心 shaderSource 的代码了。我们程序员应该向雷布斯学习,写代码要像写诗一样优雅,别人舒心,自己也舒心。下面来看看今天的正主——shaderSource

shaderSource 即材质着色器,我们前面的文章有讲过顶点着色器和片元着色器,它们都是使用相同的语言 glsl。虽然前面也曾接着某个功能详细讲解过着色器代码,但总觉得不够浅,不够浅就无法深入,不符合深入浅出的理念,所以今天要从幼儿园讲起。

一个最简单的材质实现:

uniform vec4 color;

czm_material czm_getMaterial(czm_materialInput materialInput)
{
    czm_material material = czm_getDefaultMaterial(materialInput);
    material.diffuse = color.rgb;
    material.alpha = 0.5;
    return material;
}

上面代码实现了一个颜色为 color 透明度为0.5的材质。

下面我们来简单复习下基础知识: 

uniform 传递了颜色变量 color,颜色值是由四通道的向量类型定义的,分别是 rgba,使用 uniform  关键字定义的变量都是通过 uniforms 从外部来传递进来的。

czm_ 是 Cesium 的专属标记,我们一看到它就知道它是系统函数或变量了,czm_getMaterial 就是 Cesium 的材质函数,我们只要实现这个函数就可以完成自定义材质的编写了。

czm_getDefaultMaterial 函数可以获取到默认的材质,那么这个默认的材质是什么样的呢?没错,是一片漆黑。这是因为材质默认的颜色是黑色,默认的透明度为1。那么我们通过修改默认材质的颜色和透明度就可以实现材质自定义了,即修改 diffuse alpha 值。其实材质的神奇之处就在于这里,简简单单两个属性可以衍生出出千变万化来。

下面我们看一下几种简单常用的材质设置。

纹理x轴方向渐变
uniform vec4 color;

czm_material czm_getMaterial(czm_materialInput materialInput)
{
    czm_material material = czm_getDefaultMaterial(materialInput);
    vec2 st = materialInput.st;
    material.diffuse = color.rgb;
    material.alpha = st.s;
    return material;
}

st 即纹理的 xy 值,分量取值范围0-1。我们知道 alpha 取值范围也是0-1,如果我们把 材质的 alpha 值设置成 xy 分量值,会出现什么样的效果呢?如下图。

没错,我们惊喜地发现,我们居然实现了渐变的材质嘞!其实想想原理就很好解释了,纹理从左到右,数值从0到1逐渐增大,对应着透明度也从透明逐渐变为不透明。同学想一想,如果 alpha 值设置成 st.t,会呈现什么样的效果呢?

纹理y轴方向渐变
uniform vec4 color;

czm_material czm_getMaterial(czm_materialInput materialInput)
{
    czm_material material = czm_getDefaultMaterial(materialInput);
    vec2 st = materialInput.st;
    material.diffuse = color.rgb;
    material.alpha = st.t;
    return material;
}

相信同学们都猜到了,材质呈现了从下到上的渐变效果。由此我们可以看出材质的纹理坐标是从左下角向右上角渐进的。

纹理中心向外部渐变

现在我们已经打开了自定材质的大门了,上面我们一不小心就实现了纹理渐变,不过都是从一侧到另一侧渐变的,如果我们想从中心往四周渐变又该如何做呢?说到这个问题,我们已经能联想到那些扫描特效了,几何形状都是圆形的,从中心往四周扩散的材质无疑比较适合圆形。

uniform vec4 color;

czm_material czm_getMaterial(czm_materialInput materialInput)
{
    czm_material material = czm_getDefaultMaterial(materialInput);
    vec2 st = materialInput.st;
    float dis = distance(st, vec2(0.5));
    material.diffuse = color.rgb;
    material.alpha = dis;
    return material;
}

首先我们要确定一下纹理的中心坐标,左下角坐标是(0.0, 0.0),右上角坐标是(1.0, 1.0),那么中心坐标就是(0.5, 0.5)。中心点的 alpha 值设为0,以中心点为圆心,以0.5为半径,绘制一个圆,在这个圆面上的点,距离中心点越远值越大。因此我们就由了解决方案了,就是计算中心点的距离,使用到的函数是 distance(),里面传入起始点参数即可计算出距离。

看上图发现最外圈边缘颜色比较浅,与预想的不太一样。细想一下上面的圆半径是0.5,所以最大值也只能到0.5。那么我们只要将 dis 乘以2即可,得到效果如下图。

在职在矩形上的效果如下图。

纹理外部向中心渐变

这个很好理解,只须将上面的结果反转一下即可,即用1减去距离。

uniform vec4 color;

czm_material czm_getMaterial(czm_materialInput materialInput)
{
    czm_material material = czm_getDefaultMaterial(materialInput);
    vec2 st = materialInput.st;
    float dis = distance(st, vec2(0.5));
    material.diffuse = color.rgb;
    material.alpha = 1.0 - dis * 2.0;
    return material;
}

 

查看效果图发现,材质在圆形上很完美,但在矩形上出现了奇怪的现象,这白边是哪里来的呢?仔细一想,在矩形材质中最大距离并不是0.5,而是\frac{\sqrt{2}}{2},约等于0.707,这个通过简单的三角函数就能知道了。上述代码出现了负值,所以导致了白边的出现。这时候我们可以使用clamp函数来解决,即当值大于0.707的时候,我们就将数值置为0。

clamp(x, min, max) 函数:返回 min 和 max 之间的值,如果超出范围,则如果 x < min 返回 min,如果 x > max 返回 max。

uniform vec4 color;

czm_material czm_getMaterial(czm_materialInput materialInput)
{
    czm_material material = czm_getDefaultMaterial(materialInput);
    vec2 st = materialInput.st;
    float dis = distance(st, vec2(0.5));
    material.diffuse = color.rgb;
    material.alpha = clamp(1.0 - dis * 2.0, 0.0, 1.0);
    return material;
}

我们来看一下所有材质的效果。

具体实现 

上面讲了自定义材质的原理,其实是已经将自定义材质的具体实现过程都完成了。不过我们开篇的时候提到的要实现雷达扫描的效果的,这个就稍微复杂些了,不过万变不离其宗,我相信只要你看懂了上面的内容,接下来的内容你将毫不费力。

添加圆形

这个算最基础的添加图元操作了,我完全可以省略掉这部分,但本着完整的原则,还是放上来了。直接上代码。

const position = Cartesian3.fromDegrees(80,40);
const modelMatrix = Transforms.eastNorthUpToFixedFrame(position);
const radius = 40000.0;
viewer.scene.primitives.add({
    geometryInstances:[
        new GeometryInstance({
            geometry: new EllipseGeometry({
                center: position,
                semiMajorAxis: radius,
                semiMinorAxis: radius,
            })
        })
    ],
    appearance: new MaterialAppearance({
        material: new RadarScanCircleMaterial({
            color: 'rgb(0,255,50)',
            sectorColor: 'rgb(0,255,50)',
            radians: Math.PI * 3 / 8,
            offset: 0.2
        }),
        flat: false,
        faceForward: false,
        translucent: true,
        closed: false
    }),
    asynchronous: false,
    modelMatrix: modelMatrix
});

添加雷达扫描材质

通过上面的学习,现在我们已经会创建自定义材质了。首先要做的是创建一个雷达扫描材质类,然后加入下面的着色器代码即可。

uniform vec4 color;
uniform vec4 sectorColor;
uniform float width;
uniform float radians;
uniform float offset;

czm_material czm_getMaterial(czm_materialInput materialInput)
{
    czm_material material = czm_getDefaultMaterial(materialInput);
    vec2 st = materialInput.st;
    float dis = distance(st, vec2(0.5));

    float sp = 1.0 / 5.0 / 2.0;
    float m = mod(dis, sp);
    float alpha = step(sp * (1.0 - width * 10.0), m);
    alpha = clamp(alpha, 0.2, 1.0);
    material.alpha = alpha;
    material.diffuse = color.rgb;
    
    // 绘制十字线
    if ((st.s > 0.5 - width / 2.0 && st.s < 0.5 + width / 2.0) || (st.t > 0.5 - width / 2.0 && st.t < 0.5 + width / 2.0)) {
        alpha = 1.0;
        material.diffuse = color.rgb;
        material.alpha = alpha;
    }
    
    // 绘制光晕
    float ma = mod(dis + offset, 0.5);
    if (ma < 0.25){
        alpha = ma * 3.0 + alpha;
    } else{
        alpha = 3.0 * (0.5 - ma) + alpha;
    }                           
    material.alpha = alpha;
    material.diffuse = sectorColor.rgb;

    // 绘制扇区
    vec2 xy = materialInput.st;
    float rx = xy.x - 0.5;
    float ry = xy.y - 0.5;
    float at = atan(ry, rx);
    // 半径
    float radius = sqrt(rx * rx + ry * ry);
    // 扇区叠加旋转角度
    float current_radians = at + radians;
    xy = vec2(cos(current_radians) * radius, sin(current_radians) * radius);
    xy = vec2(xy.x + 0.5, xy.y + 0.5);

    // 扇区渐变色渲染
    if (xy.y - xy.x < 0.0 && xy.x > 0.5 && xy.y > 0.5){
        material.alpha = alpha + 0.2;
        material.diffuse = sectorColor.rgb;
    }

    return material;
}

 我感觉上面的代码注释已经很详细了,结合我前面讲的材质纹理原理,应该非常容易理解。好了,让我们看看最终的效果吧。

小结 

总算是写完啦,简简单单的一篇文章花了我两天时间,效率低到姥姥家了。主要是期间把之前的 SimpleCesium 捡起来了,文章案例都是在上面完成的。三年未更新了,GitHub上面下载下来竟然跑不起来了,要说Cesium也真是可以,新版本改了引用路径之后,连老版本也受影响,索性直接升到最新版本了,一番升级改造算是勉强能看了。看了文章还不会用的同学可以去看看,再不行您就进组织呗,暗号:854943530。

PS

雷达效果是做出来了,要让里面的扇叶转起来才酷嘛。其实很简单,预留参数 radians 就是干这个的,在 preRender 事件中更新这个参数就可以动起来啦,注意,这个角度是弧度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1203616.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Spring Boot】034-Spring Boot 整合 JUnit

【Spring Boot】034-Spring Boot 整合 JUnit 文章目录 【Spring Boot】034-Spring Boot 整合 JUnit一、单元测试1、什么是单元2、什么是单元测试3、为什么要单元测试 二、JUnit1、概述简介特点 2、JUnit4概述基本用法 3、JUnit5概述组成 4、JUnit5 与 JUnit4 的常用注解对比 三…

JVM及其垃圾回收机制(GC)

目录 一.JVM内存区域划分 二.JVM类加载机制 类加载过程 类加载的时机 双亲委派模型 三.JVM垃圾回收机制&#xff08;GC) GC工作过程 1.找到垃圾/判断垃圾 &#xff08;1&#xff09;引用计数【python/PHP】 &#xff08;2&#xff09;可达性分析【Java】 2.对象释放…

Springboot细节补充

一、Bean是怎么装配的&#xff1f; 1、bean扫描 在之前的ssm中&#xff0c;spring要么用标签的形式来扫描包&#xff0c;要么使用注解ComponentScan来扫描 但是在Springboot中&#xff0c;启动类上默认有一个注解SpringBootApplication&#xff0c;里面就包含了ComponentScan…

五、L2TPv2 VPN

L2TPv2 VPN 1、L2TPv2概述1.1.目的1.2.特点 2、L2TP原理2.1.基本概念2.2.工作原理2.2.1.协议架构2.2.2.报文结构2.2.3.报文封装2.2.4.报文传输 3、工作过程4、应用场景4.1、远程拨号用户发起L2TP隧道连接4.2、LAC接入拨号请求发起L2TP隧道连接4.3、LAC接入PPPoE用户发起L2TP隧道…

Makefile的简单语法学习

通配符 假如一个目标文件所依赖的依赖文件很多&#xff0c;那样岂不是我们要写很多规则&#xff0c;这显然是不合乎常理的&#xff0c;我们可以使用通配符&#xff0c;来解决这些问题。 我们对上节程序进行修改&#xff0c;代码如下&#xff1a; test : a.o b.ogcc -o test $…

bclinux aarch64 ceph 14.2.10 文件存储 Ceph File System, 需要部署mds: ceph-deploy mds

创建池 [rootceph-0 ~]# ceph osd pool create cephfs_data 64 pool cephfs_data created [rootceph-0 ~]# ceph osd pool create cephfs_metadata 32 pool cephfs_metadata created cephfs_metadata 64 报错 官方说明&#xff1a; 元数据池通常最多可容纳几 GB 的数据。为…

“谐波”分析治理,电能质量在线监测

安科瑞 崔丽洁 摘要&#xff1a;在国家鼓励半导体材料国产化的政策导向下&#xff0c;本土半导体材料厂商不断提升半导体产品技术水平和研发能力&#xff0c;逐渐打破了国外半导体厂商的垄断格局&#xff0c;推进中国半导体材料国产化进程&#xff0c;促进中国半导体行业的发展…

ubuntu20.04有公网ip如何做端口映射?

一&#xff0c;有公网IP时如何做端口映射&#xff1f; 然后打开浏览器&#xff0c;输入192.168.2.1自己路由地址&#xff0c;进入路由器的控制面板&#xff08;如果不知道用户名和密码&#xff0c;可以在自己路由设备背面可见默认帐号密码&#xff09;。 点击转发规则&…

深度剖析c语言程序 -- 函数栈帧的创建和销毁(纯肝货)

本章的内容: 什么是函数栈帧&#xff1f; 理解函数栈帧能解决什么问题&#xff1f; 函数栈帧的创建和销毁解析 本文放到 --> 该专栏内&#xff1a;http://t.csdnimg.cn/poMzA 目录 什么是函数栈帧❓ 理解函数栈帧能解决什么问题呢&#xff1f;&#x1f4a2; 函数栈帧的…

抖音商城双11好物节,从供需两侧重新定义“好货”

【潮汐商业评论/原创】 你用的第一款护肤品是什么&#xff1f; 大部分人回忆起童年的时候&#xff0c;想起来的都是那款有着牛奶香味的、塑料包装的小袋白色乳霜——郁美净儿童霜。 但是不知何时&#xff0c;它逐渐淡出了很多人、特别是年轻人的视野&#xff0c;直到今年在互…

iManager云套件支持配置kingbase

作者 yangjunlin 前言 越来越多的涉密单位对于信创环境的要求逐渐升高&#xff0c;服务应用对国产数据库的依赖性也在提高&#xff0c;针对超图iManager for k8s产品中的开源数据库替换为kingbase等国产化数据库的客户需求和场景也就随之而来&#xff0c;因此本文将带着读者一步…

ChatGPT微信小程序系统源码/开源支持二开/AI聊天微信小程序源码/人工智能ChatGPT实现的微信小程序

源码简介&#xff1a; 关键字&#xff1a;人工智能 ChatGPT 二开ChatGPT微信小程序源码&#xff0c;作为AI聊天微信小程序源码&#xff0c;它是人工智能ChatGPT实现的微信小程序。它可以适配H5和WEB端 支持AI聊天次数限制。 ChatGPT-MP(基于ChatGPT实现的微信小程序&#xf…

广东食养食疗国际研讨会成功举行

经商务部批准的第20届中国国际保健博览会11月11日在广州隆重开幕。广东省养生文化协会召开的食养食疗国际研讨会首次亮相展会&#xff0c;备受大众关注。来自20多个国家地区的代表&#xff0c;通过线下线上、现场演讲、书面交流等不同形式参加本次活动。30多个商协会负责人和近…

后门程序2

System\CurrentControlSet\Services\Disk\Enum Windows 操作系统注册表中的一个路径。这个路径通常包含有关磁盘设备的信息。在这个特定的路径下&#xff0c;可能存储了有关磁盘枚举的配置和参数 Enum&#xff08;枚举&#xff09;子键通常包含了系统对磁盘的枚举信息&#xf…

Python实现WOA智能鲸鱼优化算法优化循环神经网络回归模型(LSTM回归算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提…

Spring的Redis客户端

如何在Spring中操作redis 在创建springboot项目的时候引入redis的依赖. 在配置文件里指定redis主机的地址和端口,此处我们配置了ssh隧道,所以连接的就是本机的8888端口. 创建一个controller类,注入操作redis的对象. 前面使用jedis,是通过jedis对象里的各种方法来操作redis的,此…

[原创]仅需小小的改变,B++ Builder 12的代码完成提示即可完美工作.

[简介] 常用网名: 猪头三 出生日期: 1981.XX.XXQQ: 643439947 个人网站: 80x86汇编小站 编程生涯: 2001年~至今[共22年] 职业生涯: 20年 开发语言: C/C、80x86ASM、PHP、Perl、Objective-C、Object Pascal、C#、Python 开发工具: Visual Studio、Delphi、XCode、Eclipse、C Bui…

实验室试剂耗材安全管理:从热点事件看其重要性

随着科学技术的不断发展&#xff0c;实验室试剂耗材在各个学科领域的应用越来越广泛。然而&#xff0c;随之而来的实验室试剂耗材安全管理问题也日益凸显。近年来&#xff0c;一系列实验室安全事件引发了社会广泛关注&#xff0c;使我们深刻认识到实验室试剂耗材安全管理的重要…

HslCommunication模拟西门子读写数据

导入HslCommunication C#端代码&#xff08;上位机&#xff09; 这里要注意的是上位机IP用的当前电脑的IP。 using HslCommunication; using HslCommunication.Profinet.Siemens; using System; using System.Collections.Generic; using System.ComponentModel; using Syste…

Ridgeline plot / 远山图 / 山脊图 怎么画?怎么优化?

工具 Origin 2022 当然&#xff0c;用Matlab、Python也是可以的。 颜色配置 色卡调整