【OpenVINO】基于 OpenVINO C# API 部署 RT-DETR 模型

news2024/9/22 3:55:12

基于 OpenVINO C# API 部署 RT-DETR 模型

  • 1. RT-DETR
  • 2. OpenVINO
  • 3. 环境配置
  • 4. 模型下载与转换
  • 5. C#代码实现
    • 5.1 模型推理类实现
      • 1. 模型推理类初始化
      • 2. 图片预测API
    • 5.2 模型数据处理类RTDETRProcess
      • 1. 定义RTDETRProcess
      • 2. 输入数据处理方法
      • 3. 预测结果数据处理方法
  • 6. 预测结果展示
  • 7. 平台推理时间测试
  • 8. 总结

  RT-DETR是在DETR模型基础上进行改进的,一种基于 DETR 架构的实时端到端检测器,它通过使用一系列新的技术和算法,实现了更高效的训练和推理,在前文我们发表了《基于 OpenVINO™ Python API 部署 RT-DETR 模型 | 开发者实战》和《基于 OpenVINO™ C++ API 部署 RT-DETR 模型 | 开发者实战》,在该文章中,我们基于OpenVINO™ Python 和 C++ API 向大家展示了的RT-DETR模型的部署流程,并分别展示了是否包含后处理的模型部署流程,为大家使用RT-DETR模型提供了很好的范例。
在实际工业应用时,有时我们需要在C#环境下使用该模型应用到工业检测中,因此在本文中,我们将向大家展示使用OpenVINO Csharp API 部署RT-DETR模型,并对比不同编程平台下模型部署的速度。
该项目所使用的全部代码已经在GitHub上开源,并且收藏在OpenVINO-CSharp-API项目里,项目所在目录链接为:

https://github.com/guojin-yan/OpenVINO-CSharp-API/tree/csharp3.0/tutorial_examples

也可以直接访问该项目,项目链接为:

https://github.com/guojin-yan/RT-DETR-OpenVINO.git

项目首发网址为:基于 OpenVINO™ C# API 部署 RT-DETR 模型 | 开发者实战

1. RT-DETR

  飞桨在去年 3 月份推出了高精度通用目标检测模型 PP-YOLOE ,同年在 PP-YOLOE 的基础上提出了 PP-YOLOE+。而继 PP-YOLOE 提出后,MT-YOLOv6、YOLOv7、DAMO-YOLO、RTMDet 等模型先后被提出,一直迭代到今年开年的 YOLOv8。
在这里插入图片描述

  YOLO 检测器有个较大的待改进点是需要 NMS 后处理,其通常难以优化且不够鲁棒,因此检测器的速度存在延迟。DETR是一种不需要 NMS 后处理、基于 Transformer 的端到端目标检测器。百度飞桨正式推出了——RT-DETR (Real-Time DEtection TRansformer) ,一种基于 DETR 架构的实时端到端检测器,其在速度和精度上取得了 SOTA 性能。

在这里插入图片描述

  RT-DETR是在DETR模型基础上进行改进的,它通过使用一系列新的技术和算法,实现了更高效的训练和推理。具体来说,RT-DETR具有以下优势:

  • 1、实时性能更佳:RT-DETR采用了一种新的注意力机制,能够更好地捕获物体之间的关系,并减少计算量。此外,RT-DETR还引入了一种基于时间的注意力机制,能够更好地处理视频数据。
  • 2、精度更高:RT-DETR在保证实时性能的同时,还能够保持较高的检测精度。这主要得益于RT-DETR引入的一种新的多任务学习机制,能够更好地利用训练数据。
  • 3、更易于训练和调参:RT-DETR采用了一种新的损失函数,能够更好地进行训练和调参。此外,RT-DETR还引入了一种新的数据增强技术,能够更好地利用训练数据。
    在这里插入图片描述

2. OpenVINO

  英特尔发行版 OpenVINO™工具套件基于oneAPI 而开发,可以加快高性能计算机视觉和深度学习视觉应用开发速度工具套件,适用于从边缘到云的各种英特尔平台上,帮助用户更快地将更准确的真实世界结果部署到生产系统中。通过简化的开发工作流程, OpenVINO™可赋能开发者在现实世界中部署高性能应用程序和算法。
在这里插入图片描述

  OpenVINO™ 2023.1于2023年9月18日发布,该工具包带来了挖掘生成人工智能全部潜力的新功能。生成人工智能的覆盖范围得到了扩展,通过PyTorch*等框架增强了体验,您可以在其中自动导入和转换模型。大型语言模型(LLM)在运行时性能和内存优化方面得到了提升。聊天机器人、代码生成等的模型已启用。OpenVINO更便携,性能更高,可以在任何需要的地方运行:在边缘、云中或本地。

3. 环境配置

本文中主要使用的项目环境可以通过NuGet Package包进行安装,Visual Studio 提供了NuGet Package包管理功能,可以通过其进行安装,主要使用下图两个程序包,C#平台安装程序包还是十分方便的,直接安装即可使用:
在这里插入图片描述
在这里插入图片描述
除了通过Visual Studio 安装,也可以通过 dotnet 指令进行安装,安装命令为:

dotnet add package OpenVINO.CSharp.Windows --version 2023.1.0.2
dotnet add package OpenCvSharp4.Windows --version 4.8.0.20230708

4. 模型下载与转换

  在之前的文章中我们已经讲解了模型的到处方式,大家可以参考下面两篇文章实现模型导出:《基于 OpenVINO™ Python API 部署 RT-DETR 模型 | 开发者实战》和《基于 OpenVINO™ C++ API 部署 RT-DETR 模型 | 开发者实战》。

5. C#代码实现

  为了更系统地实现RT-DETR模型的推理流程,我们采用C#特性,封装了RTDETRPredictor模型推理类以及RTDETRProcess模型数据处理类,下面我们将对这两个类中的关键代码进行讲解。

5.1 模型推理类实现

  C# 代码中我们定义的RTDETRPredictor模型推理类如下所示:

public class RTDETRPredictor
{
    public RTDETRPredictor(string model_path, string label_path,
    string device_name = "CPU", bool postprcoess = true)
    {}
    public Mat predict(Mat image)
    {}
    private void pritf_model_info(Model model)
    {}
    private void fill_tensor_data_image(Tensor input_tensor, Mat input_image)
    {}
    private void fill_tensor_data_float(Tensor input_tensor, float[] input_data, int data_size)
    {}
    RTDETRProcess rtdetr_process;
    bool post_flag;
    Core core;
    Model model;
    CompiledModel compiled_model;
    InferRequest infer_request;
}

1. 模型推理类初始化

  首先我们需要初始化模型推理类,初始化相关信息:

public RTDETRPredictor(string model_path, string label_path, string device_name = "CPU", bool postprcoess = true)
{
    INFO("Model path: " + model_path);
    INFO("Device name: " + device_name);
    core = new Core();
    model = core.read_model(model_path);
    pritf_model_info(model);
    compiled_model = core.compile_model(model, device_name);
    infer_request = compiled_model.create_infer_request();
    rtdetr_process = new RTDETRProcess(new Size(640, 640), label_path, 0.5f);
    this.post_flag = postprcoess;
}

  在该方法中主要包含以下几个输入:

  • model_path:推理模型地址;
  • label_path:模型预测类别文件;
  • device_name:推理设备名称;
  • post_flag:模型是否包含后处理,当post_flag = true时,包含后处理,当post_flag = false时,不包含后处理。

2. 图片预测API

  这一步中主要是对输入图片进行预测,并将模型预测结果会知道输入图片上,下面是这阶段的主要代码:

public Mat predict(Mat image)
{
    Mat blob_image = rtdetr_process.preprocess(image.Clone());
    if (post_flag)
    {
        Tensor image_tensor = infer_request.get_tensor("image");
        Tensor shape_tensor = infer_request.get_tensor("im_shape");
        Tensor scale_tensor = infer_request.get_tensor("scale_factor");
        image_tensor.set_shape(new Shape(new List<long> { 1, 3, 640, 640 }));
        shape_tensor.set_shape(new Shape(new List<long> { 1, 2 }));
        scale_tensor.set_shape(new Shape(new List<long> { 1, 2 }));
        fill_tensor_data_image(image_tensor, blob_image);
        fill_tensor_data_float(shape_tensor, rtdetr_process.get_input_shape().ToArray(), 2);
        fill_tensor_data_float(scale_tensor, rtdetr_process.get_scale_factor().ToArray(), 2);
    } else {
        Tensor image_tensor = infer_request.get_input_tensor();
        image_tensor.set_shape(new Shape(new List<long> { 1, 3, 640, 640 }));
        fill_tensor_data_image(image_tensor, blob_image);
    }
    infer_request.infer();
    ResultData results;
    if (post_flag)
    {
        Tensor output_tensor = infer_request.get_tensor("reshape2_95.tmp_0");
        float[] result = output_tensor.get_data<float>(300 * 6);
        results = rtdetr_process.postprocess(result, null, true);
    } else {
        Tensor score_tensor = infer_request.get_tensor(model.outputs()[1].get_any_name());
        Tensor bbox_tensor = infer_request.get_tensor(model.outputs()[0].get_any_name());
        float[] score = score_tensor.get_data<float>(300 * 80);
        float[] bbox = bbox_tensor.get_data<float>(300 * 4);
        results = rtdetr_process.postprocess(score, bbox, false);
    }
    return rtdetr_process.draw_box(image, results);
}

  上述代码的主要逻辑如下:首先是处理输入图片,调用定义的数据处理类,将输入图片处理成指定的数据类型;然后根据模型的输入节点情况配置模型输入数据,如果使用的是动态模型输入,需要设置输入形状;接下来就是进行模型推理;最后就是对推理结果进行处理,并将结果绘制到输入图片上。
  在模型数据加载时,此处重新设置了输入节点形状,因此此处支持动态模型输入;并且根据模型是否包含后处理分别封装了不同的处理方式,所以此处代码支持所有导出的预测模型。

5.2 模型数据处理类RTDETRProcess

1. 定义RTDETRProcess

  C# 代码中我们定义的RTDETRProcess模型推理类如下所示:

public class RTDETRProcess
{
    public RTDETRProcess(Size target_size, string label_path = null, float threshold = 0.5f, InterpolationFlags interpf = InterpolationFlags.Linear)
    {}
    public Mat preprocess(Mat image)
    {}
    public ResultData postprocess(float[] score, float[] bbox, bool post_flag)
    {}
    public List<float> get_input_shape()
    {}
    public List<float> get_scale_factor() { }
    public Mat draw_box(Mat image, ResultData results)
    {}
    private void read_labels(string label_path)
    {}
    private float sigmoid(float data)
    {}
    private int argmax(float[] data, int length)
    {}
    private Size target_size;               // The model input size.
    private List<string> labels;    // The model classification label.
    private float threshold;                    // The threshold parameter.
    private InterpolationFlags interpf;     // The image scaling method.
    private List<float> im_shape;
    private List<float> scale_factor;
}

2. 输入数据处理方法

  输入数据处理这一块需要获取图片形状大小以及图片缩放比例系数,最后直接调用OpenCV提供的数据处理方法,对输入数据进行处理。

public Mat preprocess(Mat image)
{
    im_shape = new List<float> { (float)image.Rows, (float)image.Cols };
    scale_factor = new List<float> { 640.0f / (float)image.Rows, 640.0f / (float)image.Cols };
    Mat input_mat = CvDnn.BlobFromImage(image, 1.0 / 255.0, target_size, 0, true, false);
    return input_mat;
}

3. 预测结果数据处理方法

public ResultData postprocess(float[] score, float[] bbox, bool post_flag)
{
    ResultData result = new ResultData();
    if (post_flag)
    {
        for (int i = 0; i < 300; ++i)
        {
            if (score[6 * i + 1] > threshold)
            {
                result.clsids.Add((int)score[6 * i]);
                result.labels.Add(labels[(int)score[6 * i]]);
                result.bboxs.Add(new Rect((int)score[6 * i + 2], (int)score[6 * i + 3],
                    (int)(score[6 * i + 4] - score[6 * i + 2]),
                    (int)(score[6 * i + 5] - score[6 * i + 3])));
                result.scores.Add(score[6 * i + 1]);
            }
        }
    }
    else
    {
        for (int i = 0; i < 300; ++i)
        {
            float[] s = new float[80];
            for (int j = 0; j < 80; ++j)
            {
                s[j] = score[80 * i + j];
            }
            int clsid = argmax(s, 80);
            float max_score = sigmoid(s[clsid]);
            if (max_score > threshold)
            {
                result.clsids.Add(clsid);
                result.labels.Add(labels[clsid]);
                float cx = (float)(bbox[4 * i] * 640.0 / scale_factor[1]);
                float cy = (float)(bbox[4 * i + 1] * 640.0 / scale_factor[0]);
                float w = (float)(bbox[4 * i + 2] * 640.0 / scale_factor[1]);
                float h = (float)(bbox[4 * i + 3] * 640.0 / scale_factor[0]);
                result.bboxs.Add(new Rect((int)(cx - w / 2), (int)(cy - h / 2), (int)w, (int)h));
                result.scores.Add(max_score);
            }
        }
    }
    return result;
}

  此处对输出结果做一个解释,由于我们提供了两种模型的输出,此处提供了两种模型的输出数据处理方式,主要区别在于是否对预测框进行还原以及对预测类别进行提取,具体区别大家可以查看上述代码。

6. 预测结果展示

  最后通过上述代码,我们最终可以直接实现RT-DETR模型的推理部署,RT-DETR与训练模型采用的是COCO数据集,最终我们可以获取预测后的图像结果,如图所示:
在这里插入图片描述
  上图中展示了RT-DETR模型预测结果,同时,我们对模型图里过程中的关键信息以及推理结果进行了打印:

[INFO]  Hello, World!
[INFO]  Model path: E:\Model\RT-DETR\RTDETR\rtdetr_r50vd_6x_coco.xml
[INFO]  Device name: CPU
[INFO]  Inference Model
[INFO]    Model name: Model from PaddlePaddle.
[INFO]    Input:
[INFO]       name: im_shape
[INFO]       type: float
[INFO]       shape: Shape : {1,2}
[INFO]       name: image
[INFO]       type: float
[INFO]       shape: Shape : {1,3,640,640}
[INFO]       name: scale_factor
[INFO]       type: float
[INFO]       shape: Shape : {1,2}
[INFO]    Output:
[INFO]       name: reshape2_95.tmp_0
[INFO]       type: float
[INFO]       shape: Shape : {300,6}
[INFO]       name: tile_3.tmp_0
[INFO]       type: int32_t
[INFO]       shape: Shape : {1}
[INFO]  Infer result:
[INFO]    class_id : 0, label : person, confidence : 0.9437, left_top : [504.0, 504.0], right_bottom: [596.0, 429.0]
[INFO]    class_id : 0, label : person, confidence : 0.9396, left_top : [414.0, 414.0], right_bottom: [506.0, 450.0]
[INFO]    class_id : 0, label : person, confidence : 0.8740, left_top : [162.0, 162.0], right_bottom: [197.0, 265.0]
[INFO]    class_id : 0, label : person, confidence : 0.8715, left_top : [267.0, 267.0], right_bottom: [298.0, 267.0]
[INFO]    class_id : 0, label : person, confidence : 0.8663, left_top : [327.0, 327.0], right_bottom: [346.0, 127.0]
[INFO]    class_id : 0, label : person, confidence : 0.8593, left_top : [576.0, 576.0], right_bottom: [611.0, 315.0]
[INFO]    class_id : 0, label : person, confidence : 0.8578, left_top : [104.0, 104.0], right_bottom: [126.0, 148.0]
[INFO]    class_id : 0, label : person, confidence : 0.8272, left_top : [363.0, 363.0], right_bottom: [381.0, 180.0]
[INFO]    class_id : 0, label : person, confidence : 0.8183, left_top : [349.0, 349.0], right_bottom: [365.0, 155.0]
[INFO]    class_id : 0, label : person, confidence : 0.8167, left_top : [378.0, 378.0], right_bottom: [394.0, 132.0]
[INFO]    class_id : 56, label : chair, confidence : 0.6448, left_top : [98.0, 98.0], right_bottom: [118.0, 250.0]
[INFO]    class_id : 56, label : chair, confidence : 0.6271, left_top : [75.0, 75.0], right_bottom: [102.0, 245.0]
[INFO]    class_id : 24, label : backpack, confidence : 0.6196, left_top : [64.0, 64.0], right_bottom: [84.0, 243.0]
[INFO]    class_id : 0, label : person, confidence : 0.6016, left_top : [186.0, 186.0], right_bottom: [199.0, 97.0]
[INFO]    class_id : 0, label : person, confidence : 0.5715, left_top : [169.0, 169.0], right_bottom: [178.0, 95.0]
[INFO]    class_id : 33, label : kite, confidence : 0.5623, left_top : [162.0, 162.0], right_bottom: [614.0, 539.0]

7. 平台推理时间测试

  为了评价不同平台的模型推理性能,在C++、C#平台分别部署了RT-DETR不同Backbone结构的模型,如下表所示:
在这里插入图片描述
  通过该表可以看出,不同Backbone结构的RT-DETR模型在C++、C#不同平台上所表现出来的模型推理性能基本一致,说明我们所推出的OpenVINO C# API 对模型推理性能并没有产生较大的影响。下图为模型推理时CPU使用以及内存占用情况,可以看出在本机设备上,模型部署时CPU占用在40%~45%左右,内存稳定在10G左右,所测试结果CPU以及内存占用未减去其他软件开销。
在这里插入图片描述
在这里插入图片描述

8. 总结

  在本项目中,我们介绍了OpenVINO C# API 部署RT-DETR模型的案例,并结合该模型的处理方式封装完整的代码案例,实现了在 Intel 平台使用OpenVINO C# API加速深度学习模型,有助于大家以后落地RT-DETR模型在工业上的应用。
  最后我们对比了不同Backbone结构的RT-DETR模型在C++、C#不同平台上所表现出来的模型推理性能,在C++与C#平台上,OpenVINO所表现出的性能基本一致。但在CPU平台下,RT-DETR模型推理时间依旧达不到理想效果,后续我们会继续研究该模型的量化技术,通过量化技术提升模型的推理速度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1202473.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

音频url如何下载到本地浏览器上

音频url如何下载到本地浏览器上 一、代码 一、代码 this.downloadFile(url, name)downloadFile(url, filename) {const xhr new XMLHttpRequest()xhr.open(GET, url, true)xhr.responseType blobxhr.onload function () {if (xhr.status 200) {const blob new Blob([xhr.r…

VR全景技术在城市园区发展中有哪些应用与帮助

引言&#xff1a; 在数字化时代的浪潮中&#xff0c;虚拟现实&#xff08;VR&#xff09;全景技术逐渐融入各个领域&#xff0c;也为城市园区展示带来了全新的可能性。 一&#xff0e;VR全景技术简介 虚拟现实全景技术是一种通过全景图像和视频模拟真实环境的技术。通过相关设…

ultrascale+mpsoc系列的ZYNQ中DDR4参数设置说明

ultrascalempsoc系列的ZYNQ中DDR4参数设置说明 标题1 概述标题2 讲述平台标题3 ZYNQ的DDR设置界面参数标题4 DDR参数界面说明如下 标题1 概述 本文用于讲诉ultrascalempsoc系列中的ZYNQ的DDR4的参数设置与实际硬件中的DDR选型之间的关系&#xff0c;为FPGA设计人员探明道路。 …

thinkphp8 数据库的连接

账号&#xff1a;root 密码&#xff1a;自己设置 http://localhost:888/index.php当出现这个并且能登陆就算成功了。 回到项目config/database.php .env 里面&#xff08;如果已经.example.env 改成了.env,则改下边&#xff0c;db_name改成你的数据库表名&#xff09; 多个…

响应式摄影科技传媒网站模板源码带后台

模板信息&#xff1a; 模板编号&#xff1a;540 模板编码&#xff1a;UTF8 模板颜色&#xff1a;黑白 模板分类&#xff1a;摄像、婚庆、家政、保洁 适合行业&#xff1a; 模板介绍&#xff1a; 本模板自带eyoucms内核&#xff0c;无需再下载eyou系统&#xff0c;原创设计、手…

使用SpringAOP+Redis实现接口处理幂等

文章目录 一、思路分析二、代码实战1、搭建SpringbootAOPRedis环境2、自定义注解3、切面类4、测试一下吧 一、思路分析 在调用后台接口时&#xff0c;由于用户多次点击或者说第三方重试&#xff0c;可能会导致幂等问题。 解决方案无非就是上一次请求没有处理完&#xff0c;第…

使用Tipas结合内网穿透在Ubuntu上搭建高效问题解答平台网站

文章目录 前言2.Tipask网站搭建2.1 Tipask网站下载和安装2.2 Tipask网页测试2.3 cpolar的安装和注册 3. 本地网页发布3.1 Cpolar临时数据隧道3.2 Cpolar稳定隧道&#xff08;云端设置&#xff09;3.3 Cpolar稳定隧道&#xff08;本地设置&#xff09; 4. 公网访问测试5. 结语 前…

第八章 :如何基于Spring Boot +Mybatis 快速开发 Restful API

第八章 :如何基于Spring Boot +Mybatis 快速开发 Restful API 前言 本章知识重点:主要讲解开发人员如何利用【MybatisPlus+EasyCode插件 】快速开发Restful API ,利用节约的时间学习,养成一种正向循环的技术之道,最后达到终身学习成长! 案例基于SpringBoot 2.3.2.RELEASE…

Outlook邮件视图设置怎么修复

故障现象 Outlook邮箱显示不对 故障截图 故障原因 邮箱视图设置不对 解决方案 1、在Outlook上方工具栏找到视图按钮&#xff0c;以此选择视图→视图设置→列&#xff0c;打开选择的列 2、在视图→邮件预览里面&#xff0c;选择1行&#xff0c;在阅读格式选择靠右&#xff…

站长必读:如何巧妙应对网站攻击与提升速度

亲爱的站长们&#xff0c;您是否曾为网站被攻击而烦恼&#xff0c;或者一直想让您的网站更快速地响应用户&#xff1f;别担心&#xff0c;本文将为您揭示一项重要而有效的解决方案——CDN&#xff08;内容分发网络&#xff09;。让我们一起探讨如何从站长的角度出发&#xff0c…

【深度学习实验】网络优化与正则化(三):随机梯度下降的改进——Adam算法详解(Adam≈梯度方向优化Momentum+自适应学习率RMSprop)

文章目录 一、实验介绍二、实验环境1. 配置虚拟环境2. 库版本介绍 三、实验内容0. 导入必要的库1. 随机梯度下降SGD算法a. PyTorch中的SGD优化器b. 使用SGD优化器的前馈神经网络 2.随机梯度下降的改进方法a. 学习率调整b. 梯度估计修正 3. 梯度估计修正&#xff1a;动量法Momen…

Vue使用高德地图实现点击获取经纬度以及搜索功能

1. 首先在高德开放平台申请key值 2. 然后会在这个地方显示 3. 在VScode里面安装地图 yarn add amap/amap-jsapi-loader --save 4. 准备一个容器 <div id"maps"></div> <style scoped>#maps {width: 100%;height: 100%;position: relative;z-index…

2011年12月13日 Go生态洞察:从零到Go,在谷歌首页上的24小时飞跃

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

哈希竞猜游戏开发源码部署方案

随着互联网技术的发展&#xff0c;越来越多的人开始关注网络安全问题&#xff0c;而哈希算法作为一种重要的加密技术&#xff0c;在网络安全领域得到了广泛应用。其中&#xff0c;哈希竞猜游戏作为一种新型的网络安全挑战赛&#xff0c;也受到了越来越多人的关注。本文将介绍哈…

Go语言安装教程

【Go系列-1】-Go安装教程 环境提前准备 安装的时候可以选择自己的目录进行环境管理 E:\Z_Enviroment\Go创建文件夹&#xff1a; E:\Z_Enviroment\Go E:\Z_Enviroment\GoWorks E:\Z_Enviroment\GoWorks\bin E:\Z_Enviroment\GoWorks\pkg E:\Z_Enviroment\GoWorks\src环境变量…

成都瀚网科技有限公司抖音带货的正规

成都瀚网科技有限公司&#xff0c;一家在科技领域有着深厚积累的公司&#xff0c;近年来也开始涉足电子商务领域&#xff0c;特别是在抖音等短视频平台上进行带货活动。在这个充满机遇与挑战的时代&#xff0c;该公司以其独特的商业模式和运营策略&#xff0c;正在赢得消费者的…

【实例分割】用自己数据集复现经典论文YOLACT

YOLACT&#xff1a;You Only Look At CoefficienTs &#x1f3c6;论文下载&#xff1a;paper &#x1f3c6;代码下载&#xff1a;code &#x1f3c6;论文详解&#xff1a;YOLACT 目录 &#x1f342;&#x1f342;1.安装环境 &#x1f342;&#x1f342;2.数据准备 &…

代码随想录算法训练营第23期day49| 123.买卖股票的最佳时机III、188.买卖股票的最佳时机IV

目录 一、&#xff08;leetcode 123&#xff09;买卖股票的最佳时机III 二、&#xff08;leetcode 188&#xff09;买卖股票的最佳时机IV 一、&#xff08;leetcode 123&#xff09;买卖股票的最佳时机III 力扣题目链接 增加了两次的限制&#xff0c;相应的就是需要考虑的状…

Cesium 展示——改变点与线的关联关系后可实现对点或线的单独操作

文章目录 需求分析1. 实现区域选中状态(更改前)2. 循环遍历实体判断该区域内的实体(更改前)1. 将每一条线和线所对应的两个点进行关联(更改后的逻辑)2. 将每一个点和所对应的两条线进行关联(更改后的逻辑)3. 在新增点后修改【线、点】【点、线】间的关联关系(更改后的…

scDrug:从scRNA-seq到药物反应预测

scRNA-seq技术允许在转录组水平上对数千个细胞进行测量。scRNA-seq正在成为研究肿瘤微环境中细胞成分及其相互作用的重要工具。scRNA-seq也被用于揭示肿瘤微环境模式与临床结果之间的关联&#xff0c;并在复杂组织中剖析药物治疗的细胞特异性效应。scRNA-seq的最新进展推动了疾…