【深度学习】pytorch——常用工具模块

news2025/1/11 13:56:17

笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~

深度学习专栏链接:
http://t.csdnimg.cn/dscW7

pytorch——常用工具模块

  • 数据处理 torch.utils.data模块
    • Dataset
    • DataLoader
    • sampler
    • torch.utils.data的使用
  • 计算机视觉工具包 torchvision
    • torchvision.datasets模块
    • torchvision.transforms模块
    • torchvision.models模块
  • 可视化工具 Visdom
    • 两个重要概念
    • Visdom的使用
    • vis.image
    • vis.text

数据处理 torch.utils.data模块

在解决深度学习问题的过程中,往往需要花费大量的精力去处理数据,包括图像、文本、语音或其它二进制数据等。数据的处理对训练神经网络来说十分重要,良好的数据处理不仅会加速模型训练,更会提高模型效果。考虑到这点,PyTorch提供了几个高效便捷的工具,以便使用者进行数据处理或增强等操作,同时可通过并行化加速数据加载。

  • Dataset 类:用于表示数据集,可以通过继承这个类来创建自定义的数据集。
  • DataLoader 类:用于批量加载数据,可以指定批量大小、是否打乱数据等参数。

Dataset

在PyTorch中,数据加载可通过自定义的数据集对象。数据集对象被抽象为Dataset类,实现自定义的数据集需要继承Dataset,并实现两个Python魔法方法:

  • __getitem__:返回一条数据,或一个样本。obj[index]等价于obj.__getitem__(index)
  • __len__:返回样本的数量。len(obj)等价于obj.__len__()

DataLoader

要创建一个 DataLoader,我们需要指定以下参数:

  • 数据集实例:这通常是你自定义的数据集类的实例,例如 CustomDataset。
  • 批量大小(batch_size):用于指定每个批量包含的样本数量。
  • 是否打乱数据(shuffle):指定是否在每个 epoch 开始时对数据进行打乱,通常在训练过程中会打乱数据,而在验证或测试过程中不会。
  • 多线程加载(num_workers):指定用于数据加载的线程数,可以加快数据加载速度。

sampler

在 PyTorch 中,torch.utils.data.sampler 模块包含了多种用来对数据进行采样的类,例如 SequentialSamplerRandomSamplerSubsetRandomSampler 等。这些采样器可以用于创建自定义的数据采样策略,以满足不同的训练需求。

下面是一些常用采样器的用法举例:

  1. SequentialSampler:顺序采样器,在每个 epoch 中按顺序遍历整个数据集。
from torch.utils.data import DataLoader, SequentialSampler

# 创建顺序采样器
sampler = SequentialSampler(dataset)

# 使用采样器创建数据加载器
data_loader = DataLoader(dataset, batch_size=32, sampler=sampler)
  1. RandomSampler:随机采样器,每个 epoch 随机对数据集进行采样。
from torch.utils.data import DataLoader, RandomSampler

# 创建随机采样器
sampler = RandomSampler(dataset, replacement=True, num_samples=100)

# 使用采样器创建数据加载器
data_loader = DataLoader(dataset, batch_size=32, sampler=sampler)
  1. SubsetRandomSampler:从给定索引中随机采样子集。
from torch.utils.data import SubsetRandomSampler

# 创建一个索引列表
indices = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

# 使用随机子集采样器创建数据加载器
sampler = SubsetRandomSampler(indices)
data_loader = DataLoader(dataset, batch_size=32, sampler=sampler)
  1. WeightedRandomSampler:加权随机采样,允许根据每个样本的权重来进行采样,从而更灵活地处理不平衡的数据集。这在处理类别不平衡、稀有事件或其他特定情况下非常有用。
from torch.utils.data import DataLoader, WeightedRandomSampler

# 假设有一个数据集和对应的样本权重
dataset = YourDataset()
weights = [0.1, 0.5, 0.8, 0.3, 0.6]  # 每个样本的权重

# 创建加权随机采样器
sampler = WeightedRandomSampler(weights, num_samples=10, replacement=True)

# 使用采样器创建数据加载器
data_loader = DataLoader(dataset, batch_size=32, sampler=sampler)

在这个示例中,WeightedRandomSampler 接受一个权重列表作为输入,并可以指定采样的样本数目和是否使用放回抽样(replacement=True 表示可以重复采样同一个样本)。

这些示例展示了如何使用不同的采样器来创建数据加载器,并指定不同的采样策略。可以根据具体的训练需求选择合适的采样器,并结合数据加载器来灵活地管理数据的采样和训练过程。

torch.utils.data的使用

假设有一个包含图像数据和对应标签的数据集,将创建一个自定义的数据集类来加载这些数据,并使用 DataLoader 来批量加载数据供模型训练使用。

import torch
from torch.utils.data import Dataset, DataLoader

# 假设你有图像数据和对应标签的数据集
class CustomDataset(Dataset):
    def __init__(self, data, targets, transform=None):
        self.data = data
        self.targets = targets
        self.transform = transform
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, index):
        x = self.data[index]
        y = self.targets[index]
        if self.transform:
            x = self.transform(x)
        return x, y

# 创建数据集实例
# 假设 data 和 targets 是你的图像数据和对应标签
custom_dataset = CustomDataset(data, targets, transform=your_transforms)

# 使用 DataLoader 批量加载数据
batch_size = 32
shuffle = True
num_workers = 4  # 可以加快数据加载速度的线程数

data_loader = DataLoader(custom_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)

# 遍历数据加载器,获取批量数据
for inputs, labels in data_loader:
    # 在这里执行模型训练或推理
    pass

  • 创建了一个自定义的数据集类 CustomDataset,该类继承自 torch.utils.data.Dataset,并实现了 lengetitem 方法。
  • 创建了数据集实例 custom_dataset,并使用 DataLoader 实例 data_loader 批量加载数据。
  • 通过遍历数据加载器,可以获取批量的输入数据和对应的标签,用于模型的训练或推理过程。

计算机视觉工具包 torchvision

PyTorch 的计算机视觉工具包 torchvision 提供了一系列用于图像处理和计算机视觉任务的工具和数据集。它包含了常用的数据集(如 ImageNet、CIFAR10、COCO 等)、图像变换操作、模型架构以及预训练的模型等功能,方便用户快速构建和训练计算机视觉模型。

以下是 torchvision 中一些常用的功能和模块:

  1. 数据集和数据加载器torchvision.datasets 模块提供了常用的图像数据集,例如 CIFAR, COCO, MNIST 等,并且可以通过 torchvision.transforms 模块中的图像变换操作对数据进行预处理。同时,torchvision.transforms 还提供了各种图像变换操作,如裁剪、缩放、翻转等,用于数据增强和预处理。

  2. 模型架构和预训练模型torchvision.models 模块包含了一些经典的计算机视觉模型,如 ResNet、VGG、AlexNet 等,同时还提供了这些模型在 ImageNet 数据集上预训练的参数。这些预训练模型可以用于迁移学习或者基准测试。

  3. 图像工具函数torchvision.utils 模块中提供了一些图像操作的工具函数,比如保存图像、绘制边界框、可视化图像等功能。

使用 torchvision 可以大大简化计算机视觉任务的开发过程,提高开发效率,特别是在处理图像数据、构建模型、模型评估等方面提供了很多便利。

torchvision.datasets模块

torchvision.datasets 模块是 PyTorch 中用于加载和处理常见图像数据集的模块。这个模块提供了许多流行的图像数据集,使得用户可以轻松地获取这些数据集并用于模型训练和评估。

一些常见的数据集包括:

  1. MNIST: 包含手写数字图片的数据集,常用于图像分类任务。

  2. CIFAR10 和 CIFAR100: 分别包含 10 个类别和 100 个类别的彩色图片数据集,也用于图像分类任务。

  3. ImageNet: 包含数百万张图片,涵盖了数千个类别,常用于大规模图像分类和目标检测任务。

  4. COCO (Common Objects in COntext): 包含了大量的标注的图像,用于目标检测、实例分割等任务。

torchvision.datasets 不仅提供了这些数据集的接口,还提供了数据加载器(data loader),从而可以方便地将数据集加载到模型中进行训练和测试。

使用 torchvision.datasets,我们可以通过几行简单的代码来加载这些数据集,并且可以对数据进行预处理、数据增强等操作,为模型训练提供方便。

例如,以下是使用 torchvision.datasets 加载 CIFAR-10 数据集的示例代码:

import torchvision
import torchvision.transforms as transforms

# 定义数据转换操作
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

# 加载训练集和测试集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)

这样就可以轻松地获取 CIFAR-10 数据集,并且进行相应的数据预处理,为模型训练做准备。

torchvision.transforms模块

transforms 模块是 PyTorch 中 torchvision 库的一部分,它提供了各种图像预处理和数据增强的函数,用于在训练神经网络时对图像数据进行处理。

以下是 transforms 模块中常用的一些函数:

  1. Pad(padding, fill=0, padding_mode='constant'):对图像进行填充。

  2. ToTensor():将 PIL 图像或 ndarray 转换为 tensor,并且将数值范围缩放到 [0, 1] 或 [-1, 1]。

  3. Normalize(mean, std):对 tensor 进行标准化,减去均值然后除以标准差。这个操作通常用于对输入数据进行归一化处理。

  4. Resize(size):调整图像大小为指定的尺寸。

  5. RandomHorizontalFlip():随机水平翻转图像,用于数据增强。

  6. RandomVerticalFlip():随机垂直翻转图像,用于数据增强。

  7. RandomRotation(degrees):随机旋转图像一定角度,用于数据增强。

  8. RandomCrop(size):随机裁剪图像到指定的尺寸,用于数据增强。

  9. ColorJitter(brightness=0, contrast=0, saturation=0, hue=0):随机改变图像的亮度、对比度、饱和度和色相,用于数据增强。

  10. ToPILImage():将张量(tensor)转换为 PIL 图像格式

这些函数可以通过 transforms.Compose() 组合在一起,构成一个图像预处理流水线,然后应用于加载的图像数据上,以便在训练神经网络时进行数据处理和增强。

import torchvision.transforms as transforms
from PIL import Image

# 加载图像
image_path = "data/dogcat/cat.12484.jpg"
image = Image.open(image_path)
image.show()

# 定义图像变换操作
transform = transforms.Compose([
    transforms.Pad(padding=10, fill=0, padding_mode='constant'),  # 填充操作
    transforms.Resize(256),  # 调整图像大小为 256x256
    transforms.RandomHorizontalFlip(),  # 随机水平翻转
    transforms.RandomVerticalFlip(),  # 随机垂直翻转
    transforms.RandomRotation(degrees=45),  # 随机旋转图像最多45度
    transforms.RandomCrop(224),  # 随机裁剪图像到224x224
    #transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),  # 颜色增强
    transforms.ToTensor(),  # 转换为张量
    #transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),  # 标准化
])

# 应用图像变换操作
transformed_image = transform(image)

# 显示处理后的图像
transforms.ToPILImage()(transformed_image).show()


在这里插入图片描述
在这里插入图片描述

torchvision.models模块

torchvision.models 模块提供了在 PyTorch 中使用的一系列经典的预训练模型,例如 ResNet、VGG、AlexNet、GoogLeNet 等。这些预训练模型可以用于图像分类、目标检测、语义分割等任务,并且方便用户进行迁移学习或微调。

使用 torchvision.models 模块,我们可以轻松地访问这些经典模型,并且可以加载预训练的权重参数,从而在自己的数据集上进行模型训练或推理。

以下是一些常用的预训练模型:

  1. ResNet: 包括 ResNet-18、ResNet-34、ResNet-50 等不同深度的 ResNet 模型,用于图像分类任务。

  2. VGG: 包括 VGG-11、VGG-16、VGG-19 等不同深度的 VGG 模型,也用于图像分类任务。

  3. AlexNet: AlexNet 是一个较早期的深度卷积神经网络模型,也常用于图像分类任务。

  4. GoogLeNet: GoogLeNet 是由 Google 提出的深度卷积神经网络,适用于图像分类和目标检测任务。

  5. DenseNet: 密集连接网络(DenseNet)是另一个流行的卷积神经网络结构,适用于图像分类和其他计算机视觉任务。

通过 torchvision.models,我们可以很方便地加载这些模型,并且可以直接用于自己的任务,或者进行进一步的微调以适应特定的数据集和任务需求。

以下是一个示例,展示了如何使用 torchvision.models 加载预训练的 ResNet-18 模型:

import torchvision.models as models

# 加载预训练的 ResNet-18 模型
resnet18 = models.resnet18(pretrained=True)

# 对模型进行微调或者用于推理

可视化工具 Visdom

Visdom 官方文档(https://github.com/fossasia/visdom)

Visdom 是一个用于创建实时交互式可视化的工具,最初是由 Facebook 的人工智能研究团队开发的,其开源于2017年3月,用于支持深度学习模型的可视化和监控。它提供了一个基于 Web 的用户界面,允许用户在浏览器中实时查看和操作可视化结果。Visdom 主要针对 PyTorch 和 Torch 等深度学习框架,但也可以与其他框架集成使用。

Visdom 的主要特点包括:

  1. 实时交互式可视化:Visdom 支持实时更新可视化结果,并且允许用户通过简单的交互方式进行操作,如缩放、平移、标注等,从而更好地理解数据和模型的行为。

  2. 多种类型的可视化:Visdom 提供了多种类型的可视化工具,包括折线图、条形图、散点图、热力图、直方图、图像等,满足了不同类型数据的可视化需求。

  3. 多用户支持:Visdom 支持多用户共享可视化结果,多个用户可以同时查看和操作可视化数据,这在团队协作以及教学研究方面非常有用。

  4. 语言无关性:Visdom 可以与多种编程语言进行集成,尤其是在 Python 和 Lua 等语言中应用较为广泛。

  5. 灵活的部署方式:Visdom 可以作为一个独立的服务器运行,也可以嵌入到现有的 Python 代码中,使得可视化过程更加灵活和定制化。

总的来说,Visdom 是一个功能强大、易于使用的可视化工具,特别适用于深度学习模型的训练过程监控、结果展示以及模型行为分析。通过实时交互式的可视化,用户可以更好地理解和优化他们的深度学习模型。

两个重要概念

在 Visdom 中,有两个重要的概念:窗口(window)和环境(environment)。

  1. 窗口(Window)
    在 Visdom 中,窗口是指用户界面中的一个可视化区域,用于展示特定类型的数据可视化结果,比如折线图、散点图、图像等。每个窗口都有一个唯一的标识符,可以通过这个标识符来更新或关闭窗口中的内容。用户可以在同一环境下创建多个窗口,用于同时展示不同类型的数据可视化结果,比如训练损失曲线、模型预测结果等。

  2. 环境(Environment)
    环境是 Visdom 中用于组织窗口的概念,可以理解为一个命名空间,用于区分不同类型或不同任务的可视化结果。不同环境的可视化结果相互隔离,互不影响,在使用时如果不指定env,默认使用main。不同用户、不同程序一般使用不同的env。

这两个概念的引入使得 Visdom 在展示和组织数据可视化结果时更加灵活和清晰,同时也方便用户对不同类型的数据进行管理和交互操作。

Visdom的使用

要使用 Visdom 进行可视化,您需要按照以下步骤进行设置和操作:

  1. 安装 Visdom
    首先,您需要在您的环境中安装 Visdom。可以使用以下命令使用 pip 安装 Visdom 库:

    pip install visdom
    

    在这里插入图片描述

  2. 启动 Visdom 服务器
    在安装完成后,您需要启动 Visdom 服务器。可以在终端中运行以下命令启动服务器:

    python -m visdom.server
    

    这将在本地启动一个 Visdom 服务器,并显示服务器的 URL 地址,默认为 http://localhost:8097。
    在这里插入图片描述

  3. 连接到 Visdom 服务器
    在您的 Python 脚本中,您需要导入 Visdom 库并连接到正在运行的 Visdom 服务器。可以使用以下代码片段连接到服务器:

    import visdom
    
    # 创建 Visdom 客户端对象
    vis = visdom.Visdom()
    

    此时,您的客户端将通过默认的本地连接地址连接到 Visdom 服务器。

  4. 创建窗口并显示数据
    您可以使用 Visdom 客户端对象创建窗口,并将数据显示在窗口中。以下是一个简单的示例,展示如何在折线图窗口中显示一些数据:

    import visdom
    
    # 创建 Visdom 客户端对象
    vis = visdom.Visdom()
    
    # 创建折线图窗口并显示数据
    vis.line(Y=[0], X=[0], win='my_plot', opts=dict(title='My Plot'))
    vis.line(Y=[4, 2, 3], X=[1, 2, 3], win='my_plot', update='append')
    

    这将创建一个名为 “my_plot” 的折线图窗口,并在窗口中显示数据点 (1, 4),(2, 2),(3, 3)。之后,您可以通过不断更新数据来更新窗口中的图表。
    在这里插入图片描述

这只是一个简单的使用示例,Visdom 还提供了许多其他类型的窗口和选项,用于展示和操作各种类型的数据。

import torch as t
import visdom

# 新建一个连接客户端
# 指定env = u'test1',默认端口为8097,host是‘localhost'
vis = visdom.Visdom(env=u'test1',use_incoming_socket=False)

x = t.arange(1, 30, 0.01)
y = t.sin(x)
vis.line(X=x, Y=y, win='sinx', opts={'title': 'y=sin(x)'})

在这里插入图片描述

  • vis = visdom.Visdom(env=u’test1’),用于构建一个客户端,客户端除指定env之外,还可以指定host、port等参数。

  • vis作为一个客户端对象,可以使用常见的画图函数,包括:

    • line:类似Matlab中的plot操作,用于记录某些标量的变化,如损失、准确率等
    • image:可视化图片,可以是输入的图片,也可以是GAN生成的图片,还可以是卷积核的信息
    • text:用于记录日志等文字信息,支持html格式
    • histgram:可视化分布,主要是查看数据、参数的分布
    • scatter:绘制散点图
    • bar:绘制柱状图
    • pie:绘制饼状图

Visdom同时支持PyTorch的tensor和Numpy的ndarray两种数据结构,但不支持Python的int、float等类型,因此每次传入时都需先将数据转成ndarray或tensor。上述操作的参数一般不同,但有两个参数是绝大多数操作都具备的:

  • win:用于指定pane的名字,如果不指定,visdom将自动分配一个新的pane。如果两次操作指定的win名字一样,新的操作将覆盖当前pane的内容,因此建议每次操作都重新指定win。
  • opts:选项,接收一个字典,常见的option包括titlexlabelylabelwidth等,主要用于设置pane的显示格式。

往往我们在训练网络的过程中需不断更新数值,如损失值等,这时就需要指定参数update='append'来避免覆盖之前的数值。

import torch as t
import visdom

# 新建一个连接客户端
# 指定env = u'test1',默认端口为8097,host是‘localhost'
vis = visdom.Visdom(env=u'test1',use_incoming_socket=False)

# append 追加数据
for ii in range(0, 10):
    # y = x
    x = t.Tensor([ii])
    y = x
    vis.line(X=x, Y=y, win='polynomial',name='Trace', update='append' if ii>0 else None)
    
# updateTrace 新增一条线
x = t.arange(0, 9, 0.1)
y = (x ** 2) / 9
vis.line(X=x, Y=y, win='polynomial', name='this is a new Trace',update='new')

vis.image

  • image接收一个二维或三维向量, H × W H\times W H×W 3 × H × W 3 \times H\times W 3×H×W,前者是黑白图像,后者是彩色图像。
  • images接收一个四维向量 N × C × H × W N\times C\times H\times W N×C×H×W C C C可以是1或3,分别代表黑白和彩色图像。可实现类似torchvision中make_grid的功能,将多张图片拼接在一起。images也可以接收一个二维或三维的向量,此时它所实现的功能与image一致。
import torch as t
import visdom

# 新建一个连接客户端
# 指定env = u'test1',默认端口为8097,host是‘localhost'
vis = visdom.Visdom(env=u'test',use_incoming_socket=False)

# 可视化一个随机的黑白图片
vis.image(t.randn(64, 64).numpy())

# 随机可视化一张彩色图片
vis.image(t.randn(3, 64, 64).numpy(), win='random2')

# 可视化36张随机的彩色图片,每一行6张
vis.images(t.randn(36, 3, 64, 64).numpy(), nrow=6, win='random3', opts={'title':'random_imgs'})

在这里插入图片描述

vis.text

在 Visdom 的 vis.text 函数中,可以使用 HTML 标签来自定义文本的样式和布局。以下是一个示例,展示如何在 vis.text 中使用不同的 HTML 标签和属性:

import visdom

# 连接到 Visdom 服务器
viz = visdom.Visdom()

# 创建一个文本窗口,并使用 HTML 标签来设置样式和布局
html_content = """
<h1 style="color: red;">这是一个标题</h1>
<p style="font-size: 20px;">这是一个段落</p>
<ul>
    <li>列表项1</li>
    <li>列表项2</li>
    <li>列表项3</li>
</ul>
"""

viz.text(html_content)

在这个示例中,我们使用 HTML 标签和属性来设置文本的样式和布局。通过使用 <h1> 标签,我们将文本设置为红色的标题。使用 <p> 标签,我们将文本设置为字体大小为 20px 的段落。使用 <ul><li> 标签,我们创建了一个无序列表。

当调用 viz.text 并传入带有 HTML 标签的文本内容时,Visdom 会解析该内容并相应地显示在文本窗口中。

请注意,有些 HTML 标签和属性可能在 Visdom 中不被完全支持,或者显示效果可能会因浏览器兼容性而有所区别。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1202375.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

RabbitMQ实战

文章目录 1、简介2、MQ优点缺点MQ的应用场景AMQP工作原理市面上常见的MQ 3、Linux安装RabbitMQ3.1 版本对应3.2 安装socat3.3 下载 Erlang/OTP、安装、验证 erlang方法一&#xff1a;1. 下载2. 将下载的Erlang服务上传到服务器上面3. 解压4. 编译erlang的依赖环境5. 安装Erlang…

【stack题解】逆波兰表达式求值 | 用队列实现栈

逆波兰表达式求值 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 给你一个字符串数组 tokens &#xff0c;表示一个根据 逆波兰表示法 表示的算术表达式。 请你计算该表达式。返回一个表示表达式值的整数。 注意&#xff1a; 有效的算符为 、-、…

ROS1 学习11 坐标系tf 管理系统 简介及demo示例

坐标系是我们非常熟悉的一个概念&#xff0c;也是机器人学中的重要基础&#xff0c;在一个完整的机器人系统中&#xff0c;会存在很多坐标系&#xff0c;这些坐标系之间的位置关系该如何管理&#xff1f; ROS给我们提供了一个坐标系的管理神器——TF。 比如在机械臂形态的机器…

热敏电阻B值含义

1.B值&#xff08;材料常数&#xff09; 也称为β值&#xff0c;该热敏电阻规格是NTC热敏电阻的电阻与温度之间关系的特定曲线。它是一个描述热敏电阻材料物理特性的参数&#xff0c;也是热灵敏度指标&#xff0c;B值越大&#xff0c;表示热敏电阻器的灵敏度越高。应注意的是&a…

Python标准库中隐藏的利器

Python安装之后&#xff0c;其标准库中有的模块&#xff0c;不一定要通过代码来引用&#xff0c;还可以直接在命令行中使用的。 在命令行中直接使用Python标准库的模块&#xff0c;最大的好处就是就是不用写代码&#xff0c;就能使用其中的功能&#xff0c;当临时需要一些某些…

基于SpringBoot+Redis的前后端分离外卖项目-苍穹外卖(四)

编辑员工和分类模块功能开发 1. 编辑员工1.1 需求分析与设计1.1.1 产品原型1.1.2 接口设计 1.2 代码开发1.2.1 回显员工信息功能1.2.2 修改员工信息功能 1.3 功能测试 2. 分类模块功能开发2.1 需求分析与设计2.1.1 产品原型2.1.2 接口设计2.1.3 表设计 2.2 代码实现2.2.1 Mappe…

CSP模拟

1.3n -1 题目描述 给定一个整数n&#xff0c;只能对n进行以下这几种操作&#xff1a; 1.若n是3的倍数除以3 2.加1 3.减1 求最少多少次操作才能使n变为1&#xff1f; 输入 一行一个整数n 输出 一行一个整数表示答案 样例输入 4 样例输出 2 提示 对于样例1:4-…

亚马逊鲲鹏系统强大的指纹系统可有效防止账号关联

亚马逊鲲鹏系统最新的防指纹技术支持绑定不同的代理IP&#xff0c;可以根据ip创建不同的指纹环境&#xff0c;让账号伪装成来自不同地点、不同设备的流量&#xff0c;每个账号环境隔离开来&#xff0c;实现了完全独立的操作任务&#xff0c;避免了账户指纹关联和操作轨迹关联。…

搜集的升压芯片资料

DC-DC升压芯片,输入电压0.65v/1.5v/1.8v/2v/2.5v/2.7v/3v/3.3v/3.6v/5v/12v/24v航誉微 HUB628是一款超小封装高效率、直流升压稳压电路。输入电压范围可由低2V伏特到24伏特&#xff0c;升压可达28V可调&#xff0c;且内部集成极低RDS内阻100豪欧金属氧化物半导体场效应晶体管的…

桌面云架构讲解(VDI、IDV、VOI/TCI、RDS)

目录 云桌面架构 VDI 虚拟桌面基础架构 IDV 智能桌面虚拟化 VOI/TCI VOI 虚拟系统架构 TCI 透明计算机架构 RDS 远程桌面服务 不同厂商云桌面架构 桌面传输协议 什么是云桌面 桌面云是虚拟化技术成熟后发展起来的一种应用&#xff0c;桌面云通常也称为云桌面、VDI等 …

Swagger3 GET请求,使用对象接收 Query 参数,注解怎么写?

简中互联网上就没一个靠谱的答案&#xff0c;最终翻到了 Github Issue 上才解决&#xff0c;真 TMD…… CSDN 就一坨 shit mountain 解决方案 原文&#xff1a;https://github.com/swagger-api/swagger-core/issues/4177 太长不看&#xff1a; 请求方法参数上加 ParameterObj…

【异步并发编程】使用aiohttp构建Web应用程序

文章目录 1. 写在前面1. 什么是aiohttp&#xff1f;1.1. 什么是异步编程&#xff1f; 2. 安装aiohttp3. 异步HTTP服务器4. 异步请求5. aiohttp REST实例 【作者主页】&#xff1a;吴秋霖 【作者介绍】&#xff1a;Python领域优质创作者、阿里云博客专家、华为云享专家。长期致力…

行情不好,程序员的路在哪里?

最近有人提问&#xff0c;行情不好&#xff0c;程序员的路在哪里&#xff1f;今天的文章从远程工作、市场和流量思维、新技术、自媒体几个维度来讲讲。 远程工作 如果你在二三线城市&#xff0c;机会比较少&#xff0c;可以考虑一下远程工作。找一份美国或欧洲的远程工作&…

开源网安受邀参加网络空间安全合作与发展论坛,为软件开发安全建设献计献策

​11月10日&#xff0c;在广西南宁举办的“2023网络空间安全合作与发展论坛”圆满结束。论坛在中国兵工学会的指导下&#xff0c;以“凝聚网络空间安全学术智慧&#xff0c;赋能数字经济时代四链融合”为主题&#xff0c;邀请了多位专家及企业代表共探讨网络安全发展与数字经济…

助力燃气安全运行:智慧燃气管网背景延展

关键词&#xff1a;城市燃气管网、智慧燃气管网、智慧管网、智慧燃气管网解决方案、智慧燃气 01背景 当前&#xff0c;随着我国城市化进程不断加快&#xff0c;城市燃气管网也不断延伸&#xff0c;运行规模庞大&#xff0c;地下管线复杂&#xff0c;不少城市建设“重地上轻地…

Web后端开发_01

Web后端开发 请求响应 SpringBoot提供了一个非常核心的Servlet 》DispatcherServlet&#xff0c;DispatcherServlet实现了servlet中规范的接口 请求响应&#xff1a; 请求&#xff08;HttpServletRequest&#xff09;&#xff1a;获取请求数据响应&#xff08;HttpServletRe…

2011年09月29日 Go生态洞察:image/draw包的深度解析

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

会展服务预约小程序的作用如何

不少场景都会有会展服务需求&#xff0c;比如婚宴、年会、展会等&#xff0c;往往需要租订场地&#xff0c;不同地域不同时间地点等&#xff0c;尤其大城市需求频次较高。 但在实际经营中&#xff0c;会员服务企业面临着一些难题。对多数企业来讲&#xff0c;线上是不可或缺的…

地面沉降监测站可以监测什么?

随着城市化的飞速发展&#xff0c;地面沉降问题日益凸显。为了及时掌握土地沉降情况&#xff0c;确保人们安全&#xff0c;就需要借助地面沉降监测站的力量。 一、实时监测土地沉降 地面沉降监测站的核心功能是实时监测土地沉降。通过高精度GNSS位移监测站和先进的数据分析技术…

使用Java实现一个简单的贪吃蛇小游戏

一. 准备工作 首先获取贪吃蛇小游戏所需要的头部、身体、食物以及贪吃蛇标题等图片。 然后&#xff0c;创建贪吃蛇游戏的Java项目命名为snake_game&#xff0c;并在这个项目里创建一个文件夹命名为images&#xff0c;将图片素材导入文件夹。 再在src文件下创建两个包&#xff0…