基于粒子群算法优化概率神经网络PNN的分类预测 - 附代码

news2024/11/16 19:49:03

基于粒子群算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于粒子群算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于粒子群优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用粒子群算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于粒子群优化的PNN网络

粒子群算法原理请参考:网络博客

利用粒子群算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

粒子群参数设置如下:

%% 粒子群参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,粒子群-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1200896.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

layui 表格(table)合计 取整数

第一步 开启合计行 是否开启合计行区域 table.render({elem: #myTable, url: ../baidui/, page: true, cellMinWidth: 100,totalRow:true,cols: [[ //表头//{ type: checkbox },{ type: checkbox,totalRowText: "合计" },//合计行区域{ field: id, align: center,…

c语言:解决数组中数组缺少单个的元素的问题

题目:数组nums包含从0到n的所以整数,但其中缺了一个。请编写代码找出那个缺失的整数。O(n)时间内完成。 如,输入:【3,0,1】。 输出: 2 三种方法 : 方法1:排序&#xf…

递归和master公式 系统栈 + 计算时间复杂度

前置知识:无 1)从思想上理解递归:对于新手来说,递归去画调用图是非常重要的,有利于分析递归 2)从实际上理解递归:递归不是玄学,底层是利用系统栈来实现的 3)任何递归函…

Autosar UDS开发01(UDS诊断入门概念(UDSOnCan))

目录 回顾接触UDS的过程 UDS基本概念 UDS的作用 UDS的宏观认识 UDS的CAN通讯链路 UDS的报文种类 回顾接触UDS的过程 自21年毕业后,我一直干了2年的Autosar CAN通讯开发。 开发的主要内容简单概括就是:应用报文开发、网管报文开发、休眠唤醒开发&am…

职业迷茫,我该如何做好职业规划

案例25岁男,入职2月,感觉自己在混日子,怕能力没有提升,怕以后薪资也提不起来。完全不知道应该往哪个方向进修,感觉也没有自己特别喜欢的。感觉自己特别容易多想,想多年的以后一事无成的样子。 我觉得这个案…

腾讯云5年服务器CVM和3年轻量应用服务器配置价格表

腾讯云3年轻量和5年云服务器CVM活动入口,3年轻量应用服务器配置可选2核2G4M和2核4G5M带宽,5年CVM云服务器可以选择2核4G和4核8G配置可选,阿腾云atengyun.com分享腾讯云3年轻量应用服务器和5年云服务器CVM活动入口和配置报价: 目录…

3.如何实现 API 全局异常处理?-web组件篇

文章目录 1. 统一异常处理 1. 统一异常处理 在 Spring MVC 中,通过 ControllerAdvice ExceptionHandler 注解,声明将指定类型的异常,转换成对应的 CommonResult 响应。实现的代码,可见 GlobalExceptionHandler类。

【微软技术栈】C#.NET 如何使用本地化的异常消息创建用户定义的异常

本文内容 创建自定义异常创建本地化异常消息 在本文中,你将了解如何通过使用附属程序集的本地化异常消息创建从 Exception 基类继承的用户定义异常。 一、创建自定义异常 .NET 包含许多你可以使用的不同异常。 但是,在某些情况下,如果它们…

springboot苍穹外卖实战:七、店铺营业状态设置与查询+接口文档多端分组优化

店铺营业状态设置与查询 注意,先把测试类最上面的SpringBootTest注解注释掉,否则每次启动项目都会自动帮你测试一遍,导致项目启动变慢。 其次,该项目没有设置相应拦截器对付以下情况:用户使用过程中商家突然暂停营业&…

Django(复习篇)

项目创建 1. 虚拟环境 python -m venv my_env ​ cd my_env activate/deactivate ​ pip install django ​2. 项目和app创建 cd mypros django-admin startproject Pro1 django-admin startapp app1 ​3. settings配置INSTALLED_APPS【app1"】TEMPLATES【 DIRS: [os.pat…

低价寄快递寄件微信小程序 实际商用版 寄快递 低价寄快递小程序(源代码+截图)前后台源码

盈利模式 快递代下CPS就是用户通过线上的渠道(快递小程序),线上下单寄快递来赚取差价,例如你的成本价是5元,你在后台比例设置里面设置 首重利润是1元,续重0.5元,用户下1kg的单页面显示的就是6元…

2023.11.13 hive数据仓库之分区表与分桶表操作,与复杂类型的运用

目录 0.hadoop hive的文档 1.一级分区表 2.一级分区表练习2 3.创建多级分区表 4.分区表操作 5.分桶表 6. 分桶表进行排序 7.分桶的原理 8.hive的复杂类型 9.array类型: 又叫数组类型,存储同类型的单数据的集合 10.struct类型: 又叫结构类型,可以存储不同类型单数据的集合…

帧同步的思想与异步FIFO复位

02基于FDMA三缓存构架_哔哩哔哩_bilibili 图像从外部传输进来的时候,会产生若干延迟,可能会出现各种各样的问题(断帧等),此时可以通过VS信号清空FIFO进行复位。 这个过程中的复位信号可能需要拓展,这是因为…

某手游完整性校验分析

前言 只是普通的单机手游,广告比较多,所以分析处理了下,校验流程蛮有意思的,所以就分享出来了 1.重打包崩溃处理 样本进行了加固,对其dump出dex后重打包出现崩溃 ida分析地址发现为jni函数引起 利用Xposed直接替换…

云计算——ACA学习 云计算架构

作者简介:一名云计算网络运维人员、每天分享网络与运维的技术与干货。 公众号:网络豆云计算学堂 座右铭:低头赶路,敬事如仪 个人主页: 网络豆的主页​​​​​ 目录 写在前面 前期回顾 本期介绍 一.云计算架…

基于蜻蜓算法优化概率神经网络PNN的分类预测 - 附代码

基于蜻蜓算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于蜻蜓算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于蜻蜓优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神经网络的光滑…

互联网大厂招兵买马开发鸿蒙应用,移动开发的春天又来了?

日前,美团拟开发鸿蒙系统APP的多个相关岗位正招聘开发人员引发业内关注。事实上,鸿蒙开发者已经成为京东、WPS、凤凰新闻、微博等互联网大厂争相招聘的人才,且招聘岗位众多。也就是说,这些公司正在加快鸿蒙化开发,为鸿…

思维模型 目标效应

本系列文章 主要是 分享 思维模型,涉及各个领域,重在提升认知。明确目标,激发内在动机。 1 目标效应的应用 1.1 目标效应在教育领域的应用-棉花糖实验 美国斯坦福大学心理学系的教授米歇尔(Walter Mischel)曾经进行了…

vue-常用指令

​🌈个人主页:前端青山 🔥系列专栏:Vue篇 🔖人终将被年少不可得之物困其一生 依旧青山,本期给大家带来vue篇专栏内容-常用指令 目录 常用指令 1、v-cloak 2、数据绑定指令 3、v-once 4、v-bind(重点&a…

C++ 图解二叉树非递归后序 + 实战力扣题

145.二叉树的后序遍历 145. 二叉树的后序遍历 - 力扣&#xff08;LeetCode&#xff09; class Solution { public:vector<int> postorderTraversal(TreeNode* root) {stack<TreeNode*> st;vector<int> vec;if(root NULL) return vec;TreeNode* guard root…