保姆级jupyter lab配置清单

news2024/11/17 23:33:37

❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️

👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈

博主原文链接:https://www.yourmetaverse.cn/nlp/450/

保姆级jupyter lab配置清单

(封面图由文心一格生成)

保姆级jupyter lab配置清单

在当今快速发展的数据科学和机器学习领域,有效的工具不仅仅是优势,它们是必需品。Jupyter Lab作为这一领域最受欢迎的交互式开发环境之一,已经成为研究人员、数据科学家和深度学习工程师的首选工具。其直观的界面、强大的功能以及对多种编程语言的支持,使它在学术界和工业界都得到了广泛的应用。

为什么Jupyter Lab会这么受欢迎?答案在于它的灵活性和易用性。无论是初学者还是经验丰富的专业人士,都可以通过Jupyter Lab高效地探索数据、验证理论,并将结果以直观的方式呈现出来。这种交互式编程环境为深度学习和数据分析提供了前所未有的便利。

本文旨在提供一个全面的Jupyter Lab配置指南,无论你是刚刚开始接触Jupyter Lab,还是希望提高你现有的工作流程,这里都有适合你的内容。从基础配置到高级技巧,从本地安装到远程服务端配置,我们将一步步带你深入Jupyter Lab的世界。此外,本文还将详细介绍如何在Jupyter环境中安装和使用不同的Kernel,包括热门的R语言Kernel,使得你的数据科学项目更加多元和强大。

随着数据科学的不断发展,掌握Jupyter Lab的高效使用将是每个从业者的宝贵技能。让我们开始这趟学习之旅,一探Jupyter Lab的无限可能。

1. Jupyter Lab简介

Jupyter Lab的概念与起源

Jupyter Lab是一个开源的交互式开发环境,它是Jupyter项目的一部分,旨在为数据科学、科学计算和机器学习提供一个统一的、易于使用的界面。Jupyter Lab的前身是Jupyter Notebook,一个广受欢迎的工具,已经在科学和教育领域中占有一席之地。Jupyter Lab在Jupyter Notebook的基础上进行了扩展和改进,提供了更强大的功能和更灵活的用户界面。

Jupyter Lab的核心功能

  1. 代码执行: 用户可以在代码单元格中编写和执行代码,支持多种编程语言,如Python、R和Julia。
  2. 数据可视化: 直接在界面中嵌入图表和可视化图形,使数据分析结果更加直观。
  3. 文档编辑: 支持Markdown和富文本编辑,便于创建和展示注释丰富的文档。
  4. 文件管理: 内置的文件浏览器,可以轻松管理工作空间中的文件和目录。
  5. 扩展性: 通过插件和扩展增强功能,社区支持丰富,提供了大量的自定义选项。

Jupyter Lab与Jupyter Notebook的区别

虽然Jupyter Lab是在Jupyter Notebook的基础上发展起来的,但它们之间还是有明显的差异:

  • 界面: Jupyter Lab提供了一个更为现代和模块化的界面,支持拖放单元格和窗口分割。
  • 功能: Jupyter Lab不仅支持Notebook,还集成了其他多种工具,如文本编辑器、终端、数据文件查看器等。
  • 扩展性: Jupyter Lab的扩展性更强,允许用户安装第三方插件,从而增加新的功能或定制界面。

通过这些创新,Jupyter Lab提供了一个更为完整和强大的工作环境,适应了当今数据科学领域日益增长的需求。

2. 为什么选择Jupyter Lab用于深度学习

深度学习是一种复杂且动态的领域,它要求实验性和迭代性的方法来优化模型和算法。在这样的环境中,Jupyter Lab以其独特的特性和功能,成为了深度学习研究和开发的理想工具。

1. 交互式编程环境

Jupyter Lab提供了一个交互式的编程环境,使得数据科学家和深度学习工程师能够即时运行代码,并立即看到输出。这种即时的反馈循环对于调试复杂的深度学习模型、优化算法参数以及试验新的数据处理方法至关重要。交互式环境还允许用户轻松地探索数据,测试假设,并对数据进行可视化,从而更好地理解数据特征和模型行为。

2. 数据可视化

在深度学习项目中,数据可视化是不可或缺的一环。Jupyter Lab支持多种数据可视化工具和库(如Matplotlib, Seaborn, Plotly等),这些工具可以直接嵌入到Notebook中,提供直观的图表和图像,帮助分析模型性能和理解复杂的数据结构。

3. 多语言支持

尽管Python是深度学习的主流语言,但Jupyter Lab的多语言支持使得用户可以轻松地在同一环境中集成不同的编程语言。例如,用户可以使用Python进行数据处理和模型训练,同时使用R语言进行统计分析,这种灵活性对于多学科团队来说尤为宝贵。

4. 环境管理

在深度学习项目中,管理不同的环境和依赖是一项挑战。Jupyter Lab允许用户为不同的项目创建不同的Kernel,每个Kernel可以有自己的依赖和库版本。这种环境隔离有助于保持项目的整洁和一致性,同时减少了不同项目间依赖冲突的风险。

5. 社区和资源

Jupyter Lab背后有一个活跃的开源社区,提供大量的资源、教程和插件。这些资源使得Jupyter Lab用户可以轻松地找到解决问题的方法,或者学习如何更有效地使用这个工具。

总结来说,Jupyter Lab的交互性、灵活性和强大的数据可视化功能使其成为深度学习领域的一个宝贵工具。无论是进行快速原型设计,还是进行复杂的数据分析,Jupyter Lab都提供了一个高效且用户友好的环境。

3. Jupyter Lab服务端安装和运行

在深度学习和大型数据科学项目中,通常需要利用服务器的强大计算能力。配置Jupyter Lab在服务器上运行并实现远程访问,可以让用户在任何地点、任何设备上高效地工作。以下是配置和使用Jupyter Lab服务端的关键步骤。

1. 服务器环境准备

首先,确保服务器安装了Python和必要的依赖。对于深度学习项目,还需要安装相应的机器学习库,如TensorFlow或PyTorch。推荐使用Anaconda,这是一个流行的Python数据科学平台,它可以简化包管理和环境配置。

安装anaconda可以参考链接:
https://welearnnlp.blog.csdn.net/article/details/128167211

一般anaconda上默认是安装好jupyterlab的,如果没有安装可以参考下面安装的方式。

2. 安装Jupyter Lab

在服务器上安装Jupyter Lab通常只需一条命令:

pip install jupyterlab

如果使用Anaconda,可以使用以下命令安装:

conda install -c conda-forge jupyterlab

3. 运行Jupyter Lab

运行Jupyter Lab前,建议在特定的目录中运行,这有助于管理项目文件。使用以下命令启动Jupyter Lab:

jupyter lab --no-browser --port=8888

这里--no-browser选项防止在服务器上打开浏览器,--port指定了运行端口。
如果是在服务器端挂后台运行,可以使用下面的命令:

nohup jupyter lab --no-browser --port=8888 &

4. 安全性考虑

在远程访问Jupyter Lab时,安全是非常重要的。建议使用密码或token来保护你的Jupyter Lab会话。可以在第一次运行Jupyter Lab时设置密码,或者使用token,这个token会在启动Jupyter Lab时显示在终端中。也可以在配置栏里面详细配置具体的参数。

5. 高级配置

对于高级用户,可以进一步配置Jupyter Lab以满足特定需求,例如设置HTTPS、使用Docker容器运行Jupyter Lab等。

4. jupyter lab 配置文件常见配置

使用如下命令生成jupyter lab的配置文件

jupyter notebook --generate-config

配置文件一般位于以下文件夹:

~/.jupyter/jupyter_notebook_config.py

然后进入python环境,在终端输入python回车后进入python环境,输入下面的命令设置远程访问的密码。

In [1]: from notebook.auth import passwd
In [2]: passwd()
Enter password: ******
Verify password: ******
Out[2]: '************************************************' #''里面就是生成的秘钥,需要放到配置文件里面

使用以下命令修改jupyter的配置文件参数:

vim ~/.jupyter/jupyter_notebook_config.py

常见配置文件如下所示,可以根据需要进行设置

#这里填写远程访问的IP名,填*则默认是主机IP名
c.ServerApp.ip = '*'
# 这里的密码填写上面生成的密钥
c.ServerApp.password = '************************************************'
# 禁止用host的浏览器打开jupyter
c.ServerApp.open_browser = False
# 打开jupyter lab的端口,端口自定义
c.ServerApp.port = 8888
# 允许远程访问 
c.ServerApp.allow_remote_access = True
# jupyter lab工作文件的路径
c.ServerApp.root_dir = '/path'
# IOPub数据通道的最大数据传输速率
c.ServerApp.iopub_data_rate_limit = 100000000000
# 数据传输速率的时间窗口
c.ServerApp.rate_limit_window = 10000000
# 跨站请求伪造(Cross-Site Request Forgery, XSRF)保护的启用或禁用
c.ServerApp.disable_check_xsrf = True
# kernel是否自动重启
c.KernelManager.autorestart = True
# 是否运行修改密码
c.ServerApp.allow_password_change = True
# 是否有退出按钮
c.ServerApp.quit_button = True
# 长时间不允许自动停止
c.ServerApp.shutdown_no_activity_timeout = 0
# 启动terminal
c.ServerApp.terminals_enabled = True
# terminal路径
c.ServerApp.terminado_settings = {'shell_command' : ['/bin/bash']}
# 是否允许root运行
c.ServerApp.allow_root = True
# memory监控
c.ResourceUseDisplay.mem_limit = 32*1024*1024*1024
# cpu监控
c.ResourceUseDisplay.track_cpu_percent = True
# cpu核数
c.ResourceUseDisplay.cpu_limit = 16

这些参数是在Jupyter Notebook或Jupyter Lab的配置文件中使用的,用来自定义服务器的行为和特性。下面是每个参数的解释:

  1. c.ServerApp.ip = '*'

    • 作用: 设置服务器监听的IP地址。
    • : '*' 表示接受所有IP地址的连接,使得Jupyter服务器可以从任何机器上访问。
  2. c.ServerApp.password

    • 作用: 设置用于访问Jupyter服务器的加密密码。
    • : 通常是一个加密的哈希值,出于安全考虑不应直接以明文形式显示。
  3. c.ServerApp.open_browser = False

    • 作用: 控制启动Jupyter服务器时是否自动打开浏览器。
    • : False 表示不自动打开浏览器。
  4. c.ServerApp.port = 8888

    • 作用: 指定服务器监听的端口号。
    • : 8888 是Jupyter的默认端口。
  5. c.ServerApp.allow_remote_access = True

    • 作用: 是否允许远程访问。
    • : True 表示允许从非本机地址访问Jupyter服务器。
  6. c.ServerApp.root_dir = '/path'

    • 作用: 设置Jupyter Lab的根目录。
    • : '/path' 应该替换为你希望作为Jupyter工作空间的目录路径。
  7. c.ServerApp.iopub_data_rate_limit = 100000000000

    • 作用: 设置IOPub数据通道的最大数据传输速率。
  8. c.ServerApp.rate_limit_window = 10000000

    • 作用: 定义计算数据传输速率的时间窗口。
  9. c.ServerApp.disable_check_xsrf = True

    • 作用: 是否禁用跨站请求伪造保护。
  10. c.KernelManager.autorestart = True

    • 作用: 设置是否自动重启内核。
    • : True 表示如果一个内核崩溃,它会自动重启。
  11. c.ServerApp.allow_password_change = True

    • 作用: 允许用户更改密码。
    • : True 表示用户可以更改Jupyter服务器的密码。
  12. c.ServerApp.quit_button = True

    • 作用: 是否在Jupyter界面显示退出按钮。
    • : True 表示显示退出按钮。
  13. c.ServerApp.shutdown_no_activity_timeout = 0

    • 作用: 在没有活动的情况下自动关闭服务器的超时时间。
    • : 0 表示不自动关闭。
  14. c.ServerApp.terminals_enabled = True

    • 作用: 是否启用终端。
    • : True 表示允许用户通过Jupyter访问系统终端。
  15. c.ServerApp.terminado_settings = {'shell_command' : ['/bin/bash']}

    • 作用: 设置终端使用的命令。
    • : 在这个例子中,使用/bin/bash作为终端的默认shell。
  16. c.ServerApp.allow_root = True

    • 作用: 是否允许以root用户运行。
    • : True 表示允许以root用户身份运行Jupyter服务器。
  17. c.ResourceUseDisplay.mem_limit = 32*1024*1024*1024

    • 作用: 设置Jupyter Notebook界面显示的内存使用限制。
    • : 在这个例子中,内存限制被设置为32GB。
  18. c.ResourceUseDisplay.track_cpu_percent = True

    • 作用: 是否在Jupyter Notebook界面跟踪和显示CPU使用百分比。
    • : True

5. 如何在Jupyter中安装不同的Kernel

Jupyter Lab的一个重要特点是它支持多种编程语言,这得益于其Kernel的架构。Kernel本质上是Jupyter与特定编程语言交互的桥梁。虽然Jupyter最初是为Python设计的,但现在通过安装不同的Kernel,可以使用包括R、Julia、Scala等多种语言。

1. 理解Kernel

每个Kernel都是一个独立的语言运行环境,允许你在Jupyter Notebook中运行特定语言的代码。当你在Notebook中运行代码单元格时,这些代码实际上是发送到后台的Kernel执行的,并将结果返回给Notebook。

2. 安装新Kernel

安装新的Kernel通常涉及两个步骤:首先安装目标语言环境,然后安装与该环境相关的Jupyter Kernel。

示例:安装Python Kernel

  • 如果你已经安装了Anaconda,它自带Python Kernel。
  • 对于独立的Python环境,可以使用以下命令安装IPython Kernel(Jupyter的Python Kernel):
    pip install ipykernel
    

示例:安装其他语言Kernel

  • R Kernel: 在安装了R语言环境后,运行R控制台并输入以下命令:
    install.packages('IRkernel')
    IRkernel::installspec()
    
  • Julia Kernel: 在Julia中,通过Julia的包管理器安装IJulia包:
    using Pkg
    Pkg.add("IJulia")
    

3. 管理Kernel

安装完新的Kernel后,它们将在Jupyter Lab的Kernel列表中出现。你可以在启动Notebook时选择需要的Kernel,或者在已打开的Notebook中切换Kernel。

4. 自定义Kernel

高级用户可以进一步自定义Kernel,例如为特定项目创建专用的Python环境并将其作为独立的Kernel。这可以通过虚拟环境(如conda环境或virtualenv)和ipykernel包实现。

6. 在Jupyter Lab中安装和使用R Kernel

将R Kernel集成到Jupyter Lab中允许用户在同一个环境中使用Python和R,这对于跨学科的数据分析和研究尤为重要。以下是在Jupyter Lab中安装和使用R Kernel的步骤。

1. 安装R语言环境

首先,你需要在你的系统上安装R语言。可以从R官方网站下载并安装适合你操作系统的R版本。

2. 安装R Kernel

安装了R之后,接下来需要在R环境中安装IRkernel,这是一个R语言的Jupyter Kernel。打开R控制台(或RStudio)并执行以下命令:

install.packages('IRkernel')
IRkernel::installspec(user = FALSE)  # 添加Kernel到Jupyter中,'user = FALSE'表示为所有用户安装

这些命令首先安装IRkernel包,然后使用installspec函数将其添加到Jupyter的可用Kernel列表中。

3. 使用R Kernel

安装完成后,启动Jupyter Lab。在创建新的Notebook时,你会看到R语言已经列在可选的Kernel中。选择R Kernel,就可以开始用R语言编写和执行代码了。

4. R语言的基本使用

在R Kernel的Notebook中,你可以像在R控制台中一样执行R代码。例如,你可以加载数据集、进行数据处理和分析,以及使用R的强大图形工具创建图表。

5. 利用R的数据科学库

R语言拥有丰富的数据科学库,如ggplot2用于数据可视化,dplyr用于数据处理。在Jupyter Lab的R Kernel中,这些库的使用方式与在其他R环境中无异。

6. 结合Python和R

在Jupyter Lab中,你可以在同一个项目里使用Python和R。这对于那些需要结合使用多种工具和语言的复杂项目来说,是一个巨大的优势。


❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️

👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1200465.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

由浅入深学习统计学 - 常用统计图形学习

学习笔记 第一章- 信息图形化 图形化(可视化) 在一堆数据中,自己发现了这些数据的规律,但是无法表述给其他人知道,图形化就是便于他人理解数据的规律的展示的手段。 或者说我们也可以从统计的数据图形中发现某些没有…

计算机毕业设计选题推荐-个人记账理财微信小程序/安卓APP-项目实战

✨作者主页:IT毕设梦工厂✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…

NLP实战命名实体识别

文章目录 一、导入相关包二、加载数据集三、数据预处理四、创建模型五、创建评估函数六、配置训练参数七、创建训练器八、模型训练九、模型预测 一、导入相关包 DataCollatorForTokenClassification 用于 Token 级别的分类任务 import evaluate from datasets import load_da…

【Redis系列】Redis上设置key,value的时候出现NOAUTH Authentication required提示如何解决?

哈喽,大家好,我是小浪。相信大家在初学一门新的知识点的时候都会遇到各种各样的问题,在网上找了一大堆的解决方案,最后还是无功而返,那么今天博主就记录一下在进行Redis的一些操作中遇到的问题~ 当我们好不容易安装好R…

基于SSM的KTV包厢管理系统的设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…

Windows server 2008 R2 IIS搭建ASP网站教程

一、安装应用程序服务器 提示安装成功 二、添加角色服务asp 三、asp网站配置 放入源码 设置网站首页为index.asp: 设置应用程序池 四、设置网站目录属性 五、access数据库连接配置 Cd c:\Windows\System32\inetsrv appcmd list apppool /xml | appcmd set apppool /…

HarmonyOS应用开发者高级认证(88分答案)

看好选择题,每个2分多答对2个刚好88分,祝你顺利。 其它帮扶选择题。 一、判断 只要使用端云一体化的云端资源就需要支付费用(错)所有使用Component修饰的自定义组件都支持onPageShow,onBackPress和onPageHide生命周期…

栈和队列:栈

栈的概念: 栈: 一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端 称为栈顶,另一端称为栈底。 栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。…

【零基础小白也能轻松学会】3DMAX编织建模教程

有没有想过这些木质材料是如何在椅子上相互交织的?复杂吗?也许是也许不是……本教程将指导您一步一步地以任何形式提出自己的复杂编织图案。本教程将重点关注建模部分,并让您从那里开始发挥想象力。 1.首先创建一个新平面(长度55&…

【原创课设】java+swing+mysql选课管理系统设计与实现

摘要: 随着学校规模的扩大和课程设置的多样化,传统的手工选课管理方式已经无法满足现代教育的需求。因此,开发一款高效、便捷的选课管理系统变得尤为重要。该系统可以提高选课工作的效率,减少人为错误,同时也能为学生…

第27章_事务原理之MVCC与锁机制

文章目录 MVCCread view聚集索引的隐藏列事务的可见性问题快照读当前读 redologundolog锁机制锁类型共享锁(S)排他锁(X)意向共享锁(IS)意向排他锁(IX)锁的兼容性 锁算法锁兼容关于锁…

lesson05-C++模板

个人主页:Lei宝啊 愿所有美好如期而遇 目录 泛型编程 函数模板 类模板 泛型编程 我们先看一个代码: 看着是不是有点麻烦,我们有没有一种通用的办法,让编译器能够根据不同的类型自动生成不同的函数呢?有&#xff…

c primer plus_chapter_four——字符串和格式化输入/输出

1、strlen();const;字符串;用c预处理指令#define和ANSIC的const修饰符创建符号常量; 2、c语言没有专门储存字符串的变量类型,字符串被储存在char类型的数组中;\0标记字符串的结束&a…

Java中的7大设计原则

在面向对象的设计过程中,首先需要考虑的是如何同时提高一个软件系统的可维护性和可复用性。这时,遵从面向对象的设计原则,可以在进行设计方案时减少错误设计的产生,从不同的角度提升一个软件结构的设计水平。 1、单一职责 一个类…

js案例:打地鼠游戏(打灰太狼)

效果预览图 游戏规则 当灰太狼出现的时候鼠标左键点击灰太狼加10分,小灰灰出现的时候鼠标左键点小灰灰击减10分,不点击不减分不加分。 整体思路 1.把获取背景图片中每个地洞的位置,把所有位置放到一个数组中。 2.封装随机数函数,随…

基于飞蛾扑火算法优化概率神经网络PNN的分类预测 - 附代码

基于飞蛾扑火算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于飞蛾扑火算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于飞蛾扑火优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

【每日逆向】BUUCTF--[ACTF新生赛2020] easyre

拿到exe文件先查下信息,是一个32位程序,加了壳。 不会脱,直接拿到自动脱壳机潦草结束 看着有点乱,稍微改改 嗯,这样舒服多了。就是将V6扩展到18个字节大小,V5也扩展到12个字节大小,这样更符合源…

从0开始python学习-33.夹具@pytest.fixture(scope=““,params=““,autouse=““,ids=““,name=““)

目录 1. 创建夹具 1.1 pytest方式 1.2 unittest方式 2. 使用夹具 2.1 通过参数引用 2.2 通过函数引用 3. 参数详解 3.1 scope:作用域 3.2 params-参数化 3.3 autouseTrue表示自动使用,默认为False 3.4 ids:设置变量名 3.5 name&am…

基于斑点鬣狗算法优化概率神经网络PNN的分类预测 - 附代码

基于斑点鬣狗算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于斑点鬣狗算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于斑点鬣狗优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

推荐系统笔记--基于物品的协同过滤(Item CF)

1--基本原理 Item CF的原理是根据物品的相似度来将新的物品推荐给用户;下图中用户对红色物品的感兴趣度为 [2, 1, 4, 3],红色物品与橙色物品的相似度为 [0.1, 0.4, 0.2, 0.6],因此可以计算出用户对橙色物品的感兴趣度。 Item CF的基本思想是&…