2023亚太杯数学建模B题思路

news2024/11/20 14:17:06

文章目录

  • 0 赛题思路
  • 1 竞赛信息
  • 2 竞赛时间
  • 3 建模常见问题类型
    • 3.1 分类问题
    • 3.2 优化问题
    • 3.3 预测问题
    • 3.4 评价问题
  • 4 建模资料
  • 5 最后

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 竞赛信息

2023年第十三届亚太地区大学生数学建模竞赛(以下简称“竞赛”)是北京图象图形学学会主办的亚太地区大学生学科类竞赛,竞赛由亚太地区大学生数学建模竞赛组委会负责组织,欢迎各高等院校按照竞赛章程及有关规定组织同学报名参赛。

2022年第十二届亚太地区大学生数学建模竞赛共有9700支队伍969所高校2万7千多名学生报名参赛。参赛高校覆盖北京大学、清华大学、浙江大学、同济大学、上海交通大学、复旦大学、四川大学、大连理工大学等全部的39所985高校和114所211高校。

除中国大陆高校外,本次参赛队伍还有来自美国的加州大学伯克利分校、约翰斯霍普金斯大学、纽约大学;英国的密德萨斯大学、牛津大学、利物浦大学、诺丁汉大学、爱丁堡大学;德国的亚琛工业大学、 北黑森应用技术大学;俄罗斯的圣彼得堡国立建筑大学;澳大利亚的墨尔本大学、悉尼大学;马来西亚的马来亚大学;日本的東北大学;法国的巴黎先贤祠-阿萨斯大学;澳门地区的澳门城市大学、澳门科技大学、澳门理工学院、澳门大学;香港地区的北京师范大学-香港浸会大学联合国际学院、香港中文大学、香港科技大学、香港理工大学;中外合作的宁波诺丁汉大学、深圳北理莫斯科大学、西安交通利物浦大学等高校。

目前竞赛具有较高的国际影响力,在国内高校中是作为美赛热身赛、保研加分、综合测评加分、创新奖学金等评定竞赛之一。

2 竞赛时间

报名结束时间:2023年11月22日

比赛开始时间:2023年11月23日(周四)6:00

比赛结束时间:2023年11月27日(周一)9:00

3 建模常见问题类型

趁现在赛题还没更新,A君给大家汇总一下数学建模经常使用到的数学模型,题目八九不离十基本属于一下四种问题,对应的解法A君也相应给出

分别为:

分类模型

优化模型

预测模型

评价模型

3.1 分类问题

判别分析:

又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。

其基本原理是按照一定的判别准则,建立一个或多个判别函数;用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标;据此即可确定某一样本属于何类。当得到一个新的样品数据,要确定该样品属于已知类型中哪一类,这类问题属于判别分析问题。

聚类分析:

聚类分析或聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集,这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等。

聚类分析本身不是某一种特定的算法,而是一个大体上的需要解决的任务。它可以通过不同的算法来实现,这些算法在理解集群的构成以及如何有效地找到它们等方面有很大的不同。

神经网络分类:

BP 神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。RBF(径向基)神经网络:径向基函数(RBF-Radial Basis Function)神经网络是具有单隐层的三层前馈网络。它模拟了人脑中局部调整、相互覆盖接收域的神经网络结构。感知器神经网络:是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。主要用来模拟人脑的感知特征。线性神经网络:是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。自组织神经网络:自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。K近邻算法: K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

3.2 优化问题

线性规划:

研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于生产计划、物流运输、资源分配、金融投资等领域。建模方法:列出约束条件及目标函数;画出约束条件所表示的可行域;在可行域内求目标函数的最优解及最优值。

整数规划:

规划中的变量(全部或部分)限制为整数,称为整数规划。若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。一类要求问题的解中的全部或一部分变量为整数的数学规划。从约束条件的构成又可细分为线性,二次和非线性的整数规划。

非线性规划:

非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个 n元实函数在一组等式或不等式的约束条件下的极值问题,且 目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是 线性函数的情形则属于线性规划。

动态规划:

包括背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等。

动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

多目标规划:

多目标规划是数学规划的一个分支。研究多于一个的目标函数在给定区域上的最优化。任何多目标规划问题,都由两个基本部分组成:

(1)两个以上的目标函数;

(2)若干个约束条件。有n个决策变量,k个目标函数, m个约束方程,则:

Z=F(X)是k维函数向量,Φ(X)是m维函数向量;G是m维常数向量;

3.3 预测问题

回归拟合预测

拟合预测是建立一个模型去逼近实际数据序列的过程,适用于发展性的体系。建立模型时,通常都要指定一个有明确意义的时间原点和时间单位。而且,当t趋向于无穷大时,模型应当仍然有意义。将拟合预测单独作为一类体系研究,其意义在于强调其唯“象”性。一个预测模型的建立,要尽可能符合实际体系,这是拟合的原则。拟合的程度可以用最小二乘方、最大拟然性、最小绝对偏差来衡量。

灰色预测

灰色预测是就灰色系统所做的预测。是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

马尔科夫预测:是一种可以用来进行组织的内部人力资源供给预测的方法.它的基本 思想是找出过去人事变动的 规律,以此来推测未来的人事变动趋势.转换矩阵实际上是转换概率矩阵,描述的是组织中员工流入,流出和内部流动的整体形式,可以作为预测内部劳动力供给的基础.

BP神经网络预测

BP网络(Back-ProPagation Network)又称反向传播神经网络, 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。它是一种应用较为广泛的神经网络模型,多用于函数逼近、模型识别分类、数据压缩和时间序列预测等。

支持向量机法

支持向量机(SVM)也称为支持向量网络[1],是使用分类与回归分析来分析数据的监督学习模型及其相关的学习算法。在给定一组训练样本后,每个训练样本被标记为属于两个类别中的一个或另一个。支持向量机(SVM)的训练算法会创建一个将新的样本分配给两个类别之一的模型,使其成为非概率二元线性分类器(尽管在概率分类设置中,存在像普拉托校正这样的方法使用支持向量机)。支持向量机模型将样本表示为在空间中的映射的点,这样具有单一类别的样本能尽可能明显的间隔分开出来。所有这样新的样本映射到同一空间,就可以基于它们落在间隔的哪一侧来预测属于哪一类别。

3.4 评价问题

层次分析法

是指将一个复杂的 多目标决策问题 作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

优劣解距离法

又称理想解法,是一种有效的多指标评价方法。这种方法通过构造评价问题的正理想解和负理想解,即各指标的最大值和最小值,通过计算每个方案到理想方案的相对贴近度,即靠近正理想解和远离负理想解的程度,来对方案进行排序,从而选出最优方案。

模糊综合评价法

是一种基于模糊数学的综合评标方法。 该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。 它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。

灰色关联分析法(灰色综合评价法)

对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。

典型相关分析法:是对互协方差矩阵的一种理解,是利用综合变量对之间的相关关系来反映两组指标之间的整体相关性的多元统计分析方法。它的基本原理是:为了从总体上把握两组指标之间的相关关系,分别在两组变量中提取有代表性的两个综合变量U1和V1(分别为两个变量组中各变量的线性组合),利用这两个综合变量之间的相关关系来反映两组指标之间的整体相关性。

主成分分析法(降维)

是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

因子分析法(降维)

因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。

BP神经网络综合评价法

是一种按误差逆传播算法训练的多层前馈网络,是应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

4 建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

5 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1199458.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

matlab 二自由度操纵稳定性汽车模型

1、内容简介 略 19-可以交流、咨询、答疑 二自由度操纵稳定性汽车模型 二自由度、操纵稳定性、操纵动力学 2、内容说明 1 模型假设 忽略转向系的影响,以前、后轮转角作为输入;汽车只进行平行于地面的平面运动,而忽略悬架的作用&#xf…

Halcon WPF 开发学习笔记:HSmartWindowControlWPF正常加载

文章目录 加载问题相关文章彻底解决 加载问题 我们在WPF中使用Halcon的时候,会出现图片被拉伸的问题,需要拖动才可以解决,我网上找了好久,终于找到了如何成功解决这个问题。 相关文章 3.7 Halcon 窗体显示对象消失问题 【halcon】…

(二)七种元启发算法(DBO、LO、SWO、COA、LSO、KOA、GRO)求解无人机路径规划MATLAB

一、七种算法(DBO、LO、SWO、COA、LSO、KOA、GRO)简介 1、蜣螂优化算法DBO 蜣螂优化算法(Dung beetle optimizer,DBO)由Jiankai Xue和Bo Shen于2022年提出,该算法主要受蜣螂的滚球、跳舞、觅食、偷窃和繁…

手撕数据库连接池

1.有开源的数据库连接池,你为啥不用? 这个不是因为闲的没事干,先说下需求背景 我们有一个数据源管理模块,配置的数据源连接,用户名,密码等信息 在数据源管理模块配置好之后,去另一个模块选择数…

日语形容词分类

变成肯定形式很简单,就是在后面加个です就可以了,不列在表格了 一类形容词 汉字い并且是以い结尾的形容词 否定形式是去掉い然后在后面加上くないです 更加正式的否定是去掉い然后加上くありません 日文平假名过去式过去否定中文熱いあつい熱くないで…

[护网杯 2018]easy_tornado 1(两种解法!)

题目环境:发现有三个txt文本文件 /flag.txt/welcome.txt/hints.txt 依此点开 flag在/fllllllllllllag文件中 在hints.txt文件中发现md5计算 md5(cookie_secretmd5(filename)) 并且三个文件中都存在filehash(文件名被哈希算法加密32位小写) 猜…

Halcon WPF 开发学习笔记(2):Halcon导出c#脚本和WPF初步开发

文章目录 前言HalconC#教学简单说明如何二开机器视觉如何二次开发Halcon导出Halcon脚本新建WPF项目,导入Halcon脚本和Halcon命名空间 前言 我目前搜了一下我了解的机器视觉软件,有如下特点 优点缺点兼容性教学视频(B站前三播放量)OpenCV开源&#xff0…

如何让VirtualBox系统使用Ubuntu主机的USB

如何让VirtualBox系统使用Ubuntu主机的USB 当通过 VirtualBox 尝试不同的操作系统时,访问虚拟机中的 USB 驱动器来传输数据非常有用。 安装Guest Additions 自行百度安装Guest Additions的方法,最终的效果如下: 将用户添加到 vboxusers 组…

4.HTML网页开发的工具

4. 网页开发的工具 4.1 快捷键 4.1.1 快速复制一行 快捷键:shiftalt下箭头(上箭头) 或者ctrlc 然后 ctrlv 4.1.2 选定多个相同的单词 快捷键: ctrld 4.1.3 添加多个光标 快捷键:ctrlalt上箭头(下箭头&…

企业云盘与个人云盘:区别与特点一览

企业云盘是企业在寻找文件协同工具的过程中绕不开的一个选项。企业为什么需要专门购置企业网盘,个人云盘能否满足企业的文件协作需求呢?企业云盘和个人云盘有什么区别呢? 企业云盘与个人云盘的区别 1、使用对象:顾名思义&#xf…

Java 简单实现一个 UDP 回显服务器

文章目录 UDP 服务端UDP 客户端实现效果UDP 服务端(实现字典功能)总结 UDP 服务端 package network;import java.io.IOException; import java.net.DatagramPacket; import java.net.DatagramSocket; import java.net.SocketException;public class UdpEchoServer {private Da…

CMOS介绍

1 二极管 2 CMOS 2.1 栅极、源极、漏极 2.2 内部结构 2.2 导电原理 - 原理:1.通过门级和衬底加一个垂直电场Ev,从而在两口井之间形成反形层2.如果加的电场足够强,反形层就可以把source(源极)和drain(漏极…

【项目实践01】【请求的路由转发】

文章目录 前言项目背景实现方案具体实现功能演示 思路延伸1. spring cloud gateway2. 研究路由原理2.1 寻找合适的 Handler2.2 执行 Handler2.3 处理调用结果 参考内容 前言 本系列用来记录一些在实际项目中的小东西,并记录在过程中想到一些小东西,因为…

第十六届山东省职业院校技能大赛高职组“软件测试”赛项规程

第十六届山东省职业院校技能大赛 高职组“软件测试”赛项规程 一、赛项名称 赛项名称:软件测试 赛项组别:高职组 赛项专业大类:电子与信息大类 二、竞赛目的 软件是新一代信息技术的灵魂,是数字经济发展的基础,是…

MySQL join原理及优化

MySQL的JOIN原理是基于索引和算法的。在执行JOIN查询时,MySQL会根据连接字段上的索引来查找匹配的记录。 这种算法在链接查询的时候,驱动表会根据关联字段的索引进行查找,当在索引上找到了符合的值,再回表进行查询,也就…

SharePoint 页面中插入自定义代码

我们都知道 SharePoint 是对页面进行编辑的。 对于一些有编程基础的人来说,可能需要对页面中插入代码,这样才能更好的对页面进行配置。 但是在新版本的 SharePoint modern 页面来说,虽然我们可以插入 Embed 组件。 但是 Embed 组件中是不允…

(一)正点原子I.MX6ULL kernel6.1移植准备

一、概述 学完了正点原子的I.MX6ULL移植,正点原子的教程是基于Ubuntu18,使用的是4.1.15的内核,很多年前的了。NXP官方也发布了新的6.1的内核,以及2022.04的uboot。 本文分享一下基于Ubuntu22.04(6.2.0-36-generic&…

【C++】C++入门详解 II【深入浅出 C++入门 这一篇文章就够了】

C入门 七、引用(一)引用 概念(1)引用 概念(2)引用 使用★☆(3)引用 特性(4)常引用 (二)引用的 实际应用 及 其意义☆(1&am…

【Nginx】nginx | 微信小程序验证域名配置

【Nginx】nginx | 微信小程序验证域名配置 一、说明二、域名管理 一、说明 小程序需要添加头条的功能,内容涉及到富文本内容显示图片资源存储在minio中,域名访问。微信小程序需要验证才能显示。 二、域名管理 服务器是阿里云,用的宝塔管理…

Word 插入的 Visio 图片显示为{EMBED Visio.Drawing.11} 解决方案

World中,如果我们插入了Visio图还用了Endnote, 就可能出现:{EMBED Visio.Drawing.11}问题 解决方案: 1.在相应的文字上右击,在出现的快捷菜单中单击“切换域代码”,一个一个的修复。 2.在菜单工具–>…