Could not load library libcudnn_cnn_train.so.8, 解决类似问题的思路与方法

news2024/11/26 4:54:16

完整报错

Could not load library libcudnn_cnn_train.so.8. Error: /home/ai/anaconda3/envs/ai/bin/../lib/libcudnn_ops_train.so.8: undefined symbol: _ZN5cudnn3ops26JoinInternalPriorityStreamEP12cudnnContexti, version libcudnn_ops_infer.so.8

错误原因

  该错误其实非常常见,属于小白常遇见的初级环境问题,不必太担心。此类报错基本是C++动态库丢失或者链接不上,只需要重新下载或者链接一下即可解决该类型报错。(保姆级教程,请一定耐心看完。)

分析报错信息

 其实报错中也写的很明确了,报错告诉我们不能加载libcudnn_cnn_train.so.8 这个动态库。然而,一般安装环境C++动态库是默认安装在/usr/local/路径下,当然有些读者有良好的习惯肯定会自己新建一个独立空的文件夹来存储这些依赖库,不过都可以用一下指令来找到所需要的动态库。

ldconfig -p | grep + 需要查到的库或者文本

 那我们需要找的是报错中链接不上的libcudnn_cnn_train.so.8 ,那我们就需要在终端输入

ldconfig -p | grep libcudnn_cnn_train.so.8

 执行后可以看见红色框是它的路径:
在这里插入图片描述
 还可以使用ldd指令来看链接的动态库有哪些,将上一步的路径给复制下来:

ldd /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8

 结果如下图:
在这里插入图片描述
 至此,我们大概明白了这个报错信息给我们了一些提示,要解决这个问题,就需要看报错中的第二句Error: /home/ai/anaconda3/envs/ai/bin/../lib/libcudnn_ops_train.so.8,就是我们要用这个路径下的依赖库,但是无法加载,因为上述可以用指令查到有这个库(没有的就需要安装环境了),但是报错却说找不到,原因是因为它没有链接正确

解决报错

要正确链接库很简单, 用ln -sf指令既可。
首先,我们需要找到错的库文件的安装路径以及版本,还是上述步骤查找出来的路径,但是在最后加上*号用于查看安装的版本。

ls /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_cnn_train*

找到这个动态可的绿颜色的可执行文件:
在这里插入图片描述
然后用ln -sf + 绿颜色的可执行文件 + 报错信息中的路径 ,就可以链接上库了。

sudo ln -sf /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.6.0 /home/ai/anaconda3/envs/ai/bin/../lib/libcudnn_ops_train.so.8

成果解决报错的训练截图

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1190881.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Tcl语言:基础入门(一)

Tcl语言https://blog.csdn.net/weixin_45791458/category_12488978.html?spm1001.2014.3001.5482 Tcl语言是一种脚本语言,类似于Bourne shell(sh)、C shell(csh)、Bourne-Again Shell(bash)等UNIX shell语言。Shell程序主要作为胶水缝合其他…

[100天算法】-定长子串中元音的最大数目(day 67)

题目描述 给你字符串 s 和整数 k 。请返回字符串 s 中长度为 k 的单个子字符串中可能包含的最大元音字母数。英文中的 元音字母 为(a, e, i, o, u)。示例 1:输入:s "abciiidef", k 3 输出:3 解释&#xf…

Excel和Chatgpt是最好的组合。

内容来源:bitfool1 Excel和Chatgpt是最好的组合。 您可以轻松地自动化数据处理。 我向您展示如何在不打字公式的情况下将AI与Excel一起使用: 建立chatgpt 主要目的是使用Chatgpt自动编写Excel宏。 这消除了键入公式的需求,并让您在自然语言…

53基于matlab的Tamura纹理特征提取

基于matlab的Tamura纹理特征提取,包括粗糙度、对比度、方向度、线性度、规则度、粗糙度六种,可替换自己的数据进行特征提取。程序已调通,可直接运行。 53 方向度、线性度、规则度 (xiaohongshu.com)

axios请求的问题

本来不想记录,但是实在没有办法,因为总是会出现post请求,后台接收不到数据的情况,还是记录一下如何的解决的比较好。 但是我使用export const addPsiPurOrder data > request.post(/psi/psiPurOrder/add, data); 下面是封装的代码。后台接…

系列一、Shiro概述

一、概述 Shiro是一款主流的Java安全框架,不依赖任何容器,可以运行在JavaSE 和 JavaEE项目中,它的主要作用是对访问系统的用户进行身份认证、授权、会话管理、加密等操作。 一句话:Shiro是一个用来解决安全管理的系统框架&#x…

洛谷P4185 离线+并查集

好题&#xff0c;发现没有强制在线&#xff0c;可以离线操作 排序之后带集合点数的并查集就好了 #include<bits/stdc.h> using namespace std; const int N 1e510; int n,m; int p[N],sz[N];int find(int x){if(x!p[x])p[x] find(p[x]);return p[x]; } struct Node{in…

【自动控制原理】时域分析法:稳定性分析(稳)、误差分析和计算(准)

文章目录 第3章 时域分析法3.1 基本概念3.2~4 一阶、二阶、高阶系统的时间响应及动态性能3.6 稳定性分析——稳3.6.1. 稳定性的定义3.6.2 稳定性的条件3.6.3 劳斯稳定判据首列出现0&#xff0c;但该行不全为0首列出现0&#xff0c;且该行全为0 3.5 误差分析和计算——准3.5.1稳…

矢量图形编辑软件Boxy SVG mac中文版软件特点

Boxy SVG mac是一款基于Web的矢量图形编辑器&#xff0c;它提供了一系列强大的工具和功能&#xff0c;可帮助用户创建精美的矢量图形。Boxy SVG是一款好用的软件&#xff0c;并且可以在Windows、Mac和Linux系统上运行。 Boxy SVG mac软件特点 简单易用&#xff1a;Boxy SVG的用…

使用sizeof()和strlen()去计算【数组】和【指针】的大小

文章目录 一、知识回顾1、回顾sizeof()、strlen的作用&#xff1a;2、数组和指针3、数组名 二、sizeof()、strlen()的使用区别1、注意区别&#xff1a;2、一维数组与一级指针3、二维数组与二级指针 三、总结回顾 一、知识回顾 1、回顾sizeof()、strlen的作用&#xff1a; siz…

【18】c++11新特性 —>线程同步

线程同步&#xff1a;线程同步就是让多个线程按顺序访问临界区域&#xff0c;只有在当前线程访问临时区结束后&#xff0c;下一个线程才能继续访问。&#xff08;临界区加锁即可&#xff09; #include <iostream> #include <chrono> #include <thread> #inc…

【ZYNQ】裸机 PS + PL 双网口实现之 SDK 程序设计

涉及 lwip 库文件及 ZYNQ 配置相关可参考以下文章&#xff1a; 【ZYNQ】裸机 PS PL 双网口实现之 LWIP 库文件修改 【ZYNQ】裸机 PS PL 双网口实现之 ZYNQ 配置 工程配置 启动 SDK &#xff0c;创建模板工程&#xff0c;配置 BSP。 勾选 lwip141 库。 对 lwip 做如下配置…

Flink—— Data Source 介绍

Data Source 简介 Flink 做为一款流式计算框架&#xff0c;它可用来做批处理&#xff0c;即处理静态的数据集、历史的数据集&#xff1b;也可以用来做流处理&#xff0c;即实时的处理些实时数据流&#xff0c;实时的产生数据流结果&#xff0c;只要数据源源不断的过来&#xff…

在IDEA中配置Web开发环境

一、idea配置Web开发环境 第一步&#xff1a;下载并安装Tomcat服务器&#xff08;建议放根目录&#xff0c;完整路径中不要出现中文&#xff09; 第二步&#xff1a;打开IDEA&#xff0c;新建java项目 第三步&#xff1a;为项目添加Web应用 在项目上右键➡️选择“Add Framew…

算法通关村第七关-黄金挑战二叉树迭代遍历

大家好我是苏麟 , 今天带来二叉树的迭代遍历 . 二叉树的迭代遍历 前序编列 描述 : 给你二叉树的根节点 root &#xff0c;返回它节点值的 前序 遍历。 题目 : LeetCode 二叉树的前序遍历 : 144. 二叉树的前序遍历 分析 : 前序遍历是中左右&#xff0c;如果还有左子树就一…

交叉编译中常见错误解决方法

目录 程序运行基础知识 编译程序时去哪找头文件&#xff1f; 链接时去哪找库文件&#xff1f; 运行时去哪找库文件&#xff1f; 运行时不需要头文件&#xff0c;所以头文件不用放到板子上 常见错误的解决方法 头文件问题 库文件问题 运行问题 交叉编译程序的万能命令 …

YOLOv5-6.1源码详解之损失函数loss.py

目录 1 目标检测结果精确度的度量 2 YOLOv5-6.1损失函数 2.1 classification类别损失 2.2 confidence置信度损失 2.3 localization定位损失 3 YOLOv5-6.1损失函数loss.py代码解析 3.1 class ComputeLoss 3.1.1 __init__ 3.1.2 build_targets 3.1.3 _call__ 3.2 smo…

说说React diff的原理是什么?

一、是什么 跟Vue一致&#xff0c;React通过引入Virtual DOM的概念&#xff0c;极大地避免无效的Dom操作&#xff0c;使我们的页面的构建效率提到了极大的提升 而diff算法就是更高效地通过对比新旧Virtual DOM来找出真正的Dom变化之处 传统diff算法通过循环递归对节点进行依…

Semantic-Guided Zero-Shot Learning for Low-Light ImageVideo Enhancement

论文阅读之无监督低光照图像增强 Semantic-Guided Zero-Shot Learning for Low-Light Image/Video Enhancement 代码&#xff1a; https://github.com/ShenZheng2000/SemantiGuided-Low-Light-Image-Enhancement 在低光条件下增加亮度的一个可行方法是使用更高的ISO或更长时间…

AI:76-基于机器学习的智能城市交通管理

🚀 本文选自专栏:AI领域专栏 从基础到实践,深入了解算法、案例和最新趋势。无论你是初学者还是经验丰富的数据科学家,通过案例和项目实践,掌握核心概念和实用技能。每篇案例都包含代码实例,详细讲解供大家学习。 📌📌📌在这个漫长的过程,中途遇到了不少问题,但是…