Flink—— Data Source 介绍

news2025/1/11 18:43:33

Data Source 简介

        Flink 做为一款流式计算框架,它可用来做批处理,即处理静态的数据集、历史的数据集;也可以用来做流处理,即实时的处理些实时数据流,实时的产生数据流结果,只要数据源源不断的过来,Flink 就能够一直计算下去,这个 Data Sources 就是数据的来源地。

        Flink 中你可以使用 StreamExecutionEnvironment.addSource(sourceFunction) 来为你的程序添加数据来源。

        Flink 已经提供了若干实现好了的 source functions,当然你也可以通过实现 SourceFunction 来自定义非并行的 source 或者实现 ParallelSourceFunction 接口或者扩展 RichParallelSourceFunction 来自定义并行的 source。

Flink Data Source分类

Flink的数据源可以根据数据的来源和特性进行分类。以下是常见的Flink数据源分类:

集合数据源

        集合数据源(Collection Data Source):集合数据源指的是将本地的集合或数组作为输入数据的数据源。在Flink中,可以使用fromCollection、fromElements等方法将Java或Scala中的集合数据转化为数据流进行处理。

1、fromCollection(Collection) - 从 Java 的 Java.util.Collection 创建数据流。集合中的所有元素类型必须相同。

2、fromCollection(Iterator, Class) - 从一个迭代器中创建数据流。Class 指定了该迭代器返回元素的类型。

3、fromElements(T …) - 从给定的对象序列中创建数据流。所有对象类型必须相同。

4、fromParallelCollection(SplittableIterator, Class) - 从一个迭代器中创建并行数据流。Class 指定了该迭代器返回元素的类型。

5、generateSequence(from, to) - 创建一个生成指定区间范围内的数字序列的并行数据流。

import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.DataSet;
import java.util.Arrays;
import java.util.List;

public class CollectionDataSourceExample {
    public static void main(String[] args) throws Exception {
        final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

        // 创建一个包含整数的集合
        List<Integer> data = Arrays.asList(1, 2, 3, 4, 5);

        // 将集合转化为Flink的DataSet
        DataSet<Integer> dataset = env.fromCollection(data);

        // 打印数据集中的元素
        dataset.print();
    }
}

关于使用集合数据源的注意事项:

  1. 数据规模:集合数据源适用于小规模数据集。确保你的数据集在内存中能够合理存放,不至于导致内存溢出。

  2. 内存消耗:集合数据源会将所有数据存储在内存中,因此需要谨慎处理大型数据集,避免对内存资源造成过大压力。

  3. 并行度设置:在集群环境下,可以通过设置并行度来充分利用集群资源,提高作业的执行效率。

  4. 调试和测试:集合数据源非常适合用于本地调试和测试,可以快速验证处理逻辑并观察输出结果。

使用集合数据源时需要注意这些方面,以确保作业能够稳定运行并获得良好的性能表现。

文件数据源

        文件数据源(File Data Source):文件数据源用于从文件系统中读取数据,可以是本地文件系统或分布式文件系统(如HDFS)。Flink提供了readTextFile、readCsvFile等方法来支持常见文件格式的数据读取。

1、readTextFile(path) - 读取文本文件,即符合 TextInputFormat 规范的文件,并将其作为字符串返回。

2、readFile(fileInputFormat, path) - 根据指定的文件输入格式读取文件(一次)。

3、readFile(fileInputFormat, path, watchType, interval, pathFilter, typeInfo) - 这是上面两个方法内部调用的方法。它根据给定的 fileInputFormat 和读取路径读取文件。根据提供的 watchType,这个 source 可以定期(每隔 interval 毫秒)监测给定路径的新数据(FileProcessingMode.PROCESS_CONTINUOUSLY),或者处理一次路径对应文件的数据并退出(FileProcessingMode.PROCESS_ONCE)。你可以通过 pathFilter 进一步排除掉需要处理的文件。

import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.DataSet;

public class FileDataSourceExample {
    public static void main(String[] args) throws Exception {
        final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

        // 从文件创建数据集
        String filePath = "path/to/your/file.txt";
        DataSet<String> text = env.readTextFile(filePath);

        // 打印文件中的内容
        text.print();
    }
}

关于使用文件数据源的注意事项:

  1. 文件路径:确保提供的文件路径是正确的,可以是本地文件系统路径,也可以是HDFS路径或其他支持的文件系统路径。

  2. 文件格式:Flink支持多种文件格式,包括文本文件、CSV文件、Parquet文件等。根据实际情况选择合适的文件格式进行读取。

  3. 并行度设置:在集群环境下,可以通过设置并行度来充分利用集群资源,提高文件读取的并行处理能力。

  4. 文件分区:对于大型文件,可以考虑文件分区和并行读取,以加速数据的加载和处理过程。

  5. 文件读取性能:尽量避免频繁的小文件读取操作,因为这会增加文件系统的负担并降低整体性能。

使用文件数据源时需要注意以上方面,以确保能够有效地读取文件数据,并且提高作业的执行效率。

Socket数据源

        Socket数据源(Socket Data Source):Socket数据源允许通过网络套接字接收数据,通常用于测试和演示目的。Flink可以使用socketTextStream方法从TCP socket接收数据流。

socketTextStream(String hostname, int port) - 从 socket 读取。元素可以用分隔符切分。

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class SocketDataSourceExample {
    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 从socket创建数据流
        String hostname = "localhost";
        int port = 9999;
        env.socketTextStream(hostname, port)
           .print();

        // 执行作业
        env.execute("Socket Data Source Example");
    }
}

关于使用Socket数据源的注意事项:

  1. 主机和端口:确保指定的主机和端口是正确的,并且能够与数据源通信。

  2. 网络延迟:由于Socket数据源涉及网络通信,因此可能受到网络延迟的影响。需要考虑网络性能对作业整体性能的影响。

  3. 并行度设置:可以通过设置并行度来充分利用集群资源,提高数据流处理的并行能力。

  4. 数据格式:需要确保从Socket接收到的数据能够被正确解析和处理,例如按行读取文本数据等。

  5. 容错机制:在使用Socket数据源时,需要考虑作业的容错机制,以确保在发生故障或数据丢失时能够正确处理和恢复。

使用Socket数据源时需要注意以上方面,以确保能够有效地接收数据并提高作业的执行效率。

自定义数据源

        自定义数据源(Custom Data Source):除了上述内置的数据源外,Flink还支持自定义数据源。用户可以实现自己的SourceFunction接口来定义特定的数据生成逻辑,例如从消息队列、数据库、传感器等实时数据源中读取数据。

import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;
import org.apache.flink.streaming.api.functions.source.SourceFunction;

public class CustomDataSource extends RichParallelSourceFunction<String> {
    private boolean running = true;

    @Override
    public void run(SourceContext<String> ctx) throws Exception {
        while (running) {
            // 生成数据
            String data = generateData();
            // 发射数据
            ctx.collect(data);
            // 控制数据生成频率
            Thread.sleep(1000);
        }
    }

    @Override
    public void cancel() {
        running = false;
    }

    private String generateData() {
        // 实现自定义的数据生成逻辑
        return "some data";
    }
}

        在这个示例中,我们创建了一个名为CustomDataSource的类,它继承自RichParallelSourceFunction并指定了数据类型为String。在run方法中,我们使用一个循环来生成数据并通过collect方法将数据发射出去。在cancel方法中,我们设置了一个标志位来控制数据源的运行状态。

关于使用自定义数据源的注意事项:

  1. 并行度设置:根据数据源的性质和数据量合理地设置并行度,以充分利用集群资源。

  2. 数据生成频率:确保数据生成的频率和速度能够适应作业的处理能力,避免数据源产生过快导致作业无法及时处理。

  3. 容错机制:在自定义数据源中,需要考虑作业的容错机制,例如在发生故障时如何正确处理和恢复。

  4. 数据格式:确保从自定义数据源产生的数据能够被正确解析和处理,符合作业的输入要求。

  5. 资源管理:需要确保自定义数据源的资源占用和生命周期管理,避免资源泄露或过度占用资源。

使用自定义数据源时需要考虑以上方面,并确保能够有效地产生数据并提高作业的执行效率。

Apache Kafka数据源

        Apache Kafka数据源(Kafka Data Source):作为流数据处理框架,Flink对Kafka提供了良好的集成支持。可以使用addSource方法结合Flink的Kafka Connector来从Kafka主题中读取数据。

import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;

import java.util.Properties;

public class KafkaDataSourceExample {
    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // Kafka配置
        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers", "localhost:9092");
        properties.setProperty("group.id", "flink-consumer-group");

        // 创建Kafka数据流
        FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>("my-topic", new SimpleStringSchema(), properties);
        DataStream<String> kafkaDataStream = env.addSource(kafkaConsumer);

        kafkaDataStream.print();

        // 执行作业
        env.execute("Kafka Data Source Example");
    }
}

在这个示例中,我们首先创建了一个StreamExecutionEnvironment对象,然后设置Kafka的连接配置,包括bootstrap servers和consumer group id等。接下来,我们创建了一个FlinkKafkaConsumer对象,指定了要消费的topic以及数据的序列化方式,并将其添加到流处理环境中。最后,我们通过调用print方法来打印数据流中的内容,并通过execute方法启动作业并执行。

关于使用Kafka数据源的注意事项:

  1. Kafka配置:确保指定的Kafka配置正确,并能够与Kafka集群进行通信。

  2. 序列化方式:根据实际情况选择合适的数据序列化方式,例如SimpleStringSchema、JSON、Avro等。

  3. 并行度设置:可以通过设置并行度来充分利用集群资源,提高数据流处理的并行能力。

  4. 数据消费策略:需要考虑消费数据的策略,如是否从最新/最旧的数据开始消费,以及如何处理消费过程中的偏移量。

  5. 容错机制:在使用Kafka数据源时,需要考虑作业的容错机制,以确保在发生故障或数据丢失时能够正确处理和恢复。

使用Kafka数据源时需要注意以上方面,以确保能够有效地消费Kafka中的数据并提高作业的执行效率。

Apache Pulsar数据源

        Apache Pulsar数据源(Pulsar Data Source):类似于Kafka,Flink也集成了对Pulsar的支持,可以直接从Pulsar主题中读取数据。

import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.pulsar.FlinkPulsarSource;
import org.apache.pulsar.client.api.Schema;
import org.apache.pulsar.client.api.PulsarClientException;

public class PulsarDataSourceExample {
    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        String serviceUrl = "pulsar://localhost:6650";
        String topic = "my-topic";

        FlinkPulsarSource<String> pulsarSource = new FlinkPulsarSource<>(
                serviceUrl,
                topic,
                Schema.STRING
        );

        DataStream<String> pulsarDataStream = env.addSource(pulsarSource);

        pulsarDataStream.print();

        env.execute("Pulsar Data Source Example");
    }
}

        在这个示例中,我们首先创建了一个StreamExecutionEnvironment对象,然后指定了Pulsar的连接信息和要消费的topic。接下来,我们创建了一个FlinkPulsarSource对象,并指定了Pulsar的serviceUrl、topic以及数据的Schema,并将其添加到流处理环境中。最后,我们通过调用print方法来打印数据流中的内容,并通过execute方法启动作业并执行。

关于使用Pulsar数据源的注意事项:

  1. Pulsar连接配置:确保指定的Pulsar连接信息正确,并能够与Pulsar集群进行通信。

  2. Schema设置:根据实际情况选择合适的数据Schema,例如STRING、JSON、AVRO等。

  3. 并行度设置:可以通过设置并行度来充分利用集群资源,提高数据流处理的并行能力。

  4. 数据消费策略:需要考虑消费数据的策略,如是否从最新/最旧的数据开始消费,以及如何处理消费过程中的偏移量。

  5. 容错机制:在使用Pulsar数据源时,需要考虑作业的容错机制,以确保在发生故障或数据丢失时能够正确处理和恢复。

        使用Pulsar数据源时需要注意以上方面,以确保能够有效地消费Pulsar中的数据并提高作业的执行效率。

        这些不同类型的数据源为Flink应用程序提供了灵活的数据接入方式,使得Flink可以轻松地处理不同来源和格式的数据。根据具体的业务需求和场景特点,可以选择合适的数据源类型来构建流处理和批处理应用程序。

更多消息资讯,请访问昂焱数据(https://www.ayshuju.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1190860.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

在IDEA中配置Web开发环境

一、idea配置Web开发环境 第一步&#xff1a;下载并安装Tomcat服务器&#xff08;建议放根目录&#xff0c;完整路径中不要出现中文&#xff09; 第二步&#xff1a;打开IDEA&#xff0c;新建java项目 第三步&#xff1a;为项目添加Web应用 在项目上右键➡️选择“Add Framew…

算法通关村第七关-黄金挑战二叉树迭代遍历

大家好我是苏麟 , 今天带来二叉树的迭代遍历 . 二叉树的迭代遍历 前序编列 描述 : 给你二叉树的根节点 root &#xff0c;返回它节点值的 前序 遍历。 题目 : LeetCode 二叉树的前序遍历 : 144. 二叉树的前序遍历 分析 : 前序遍历是中左右&#xff0c;如果还有左子树就一…

交叉编译中常见错误解决方法

目录 程序运行基础知识 编译程序时去哪找头文件&#xff1f; 链接时去哪找库文件&#xff1f; 运行时去哪找库文件&#xff1f; 运行时不需要头文件&#xff0c;所以头文件不用放到板子上 常见错误的解决方法 头文件问题 库文件问题 运行问题 交叉编译程序的万能命令 …

YOLOv5-6.1源码详解之损失函数loss.py

目录 1 目标检测结果精确度的度量 2 YOLOv5-6.1损失函数 2.1 classification类别损失 2.2 confidence置信度损失 2.3 localization定位损失 3 YOLOv5-6.1损失函数loss.py代码解析 3.1 class ComputeLoss 3.1.1 __init__ 3.1.2 build_targets 3.1.3 _call__ 3.2 smo…

说说React diff的原理是什么?

一、是什么 跟Vue一致&#xff0c;React通过引入Virtual DOM的概念&#xff0c;极大地避免无效的Dom操作&#xff0c;使我们的页面的构建效率提到了极大的提升 而diff算法就是更高效地通过对比新旧Virtual DOM来找出真正的Dom变化之处 传统diff算法通过循环递归对节点进行依…

Semantic-Guided Zero-Shot Learning for Low-Light ImageVideo Enhancement

论文阅读之无监督低光照图像增强 Semantic-Guided Zero-Shot Learning for Low-Light Image/Video Enhancement 代码&#xff1a; https://github.com/ShenZheng2000/SemantiGuided-Low-Light-Image-Enhancement 在低光条件下增加亮度的一个可行方法是使用更高的ISO或更长时间…

AI:76-基于机器学习的智能城市交通管理

🚀 本文选自专栏:AI领域专栏 从基础到实践,深入了解算法、案例和最新趋势。无论你是初学者还是经验丰富的数据科学家,通过案例和项目实践,掌握核心概念和实用技能。每篇案例都包含代码实例,详细讲解供大家学习。 📌📌📌在这个漫长的过程,中途遇到了不少问题,但是…

leetcode:LCP 11. 期望个数统计(python3解法)

难度&#xff1a;简单 某互联网公司一年一度的春招开始了&#xff0c;一共有 n 名面试者入选。每名面试者都会提交一份简历&#xff0c;公司会根据提供的简历资料产生一个预估的能力值&#xff0c;数值越大代表越有可能通过面试。 小 A 和小 B 负责审核面试者&#xff0c;他们均…

计算机二级公共基础

知识点 1.树 树的最大层次&#xff08;最长路径的长度&#xff09;称为树的深度 二叉树的后件最多不超过两个 满二叉树&#xff1a;除最后一层每一层的所有节点都有两个子节点。&#xff08;满二叉树一定是完全二叉树&#xff09; 完全二叉树&#xff1a;所有节点均达到最大数…

显著提升!| (WOA)融合模拟退火和自适应变异的混沌鲸鱼优化算法应用于函数寻优

鲸鱼优化算法(whale optimization algorithm,WOA)是由Mirjalili和Lewis[1]于2016年提出的一种新型群体智能优化搜索方法,它源于对自然界中座头鲸群体狩猎行为的模拟&#xff0c;与其它群体智能优化算法相比&#xff0c;WOA算法结构新颖, 控制参数少&#xff0c;在许多数值优化和…

JavaScript使用Ajax

Ajax(Asynchronous JavaScript and XML)是使用JavaScript脚本&#xff0c;借助XMLHttpRequest插件&#xff0c;在客户端与服务器端之间实现异步通信的一种方法。2005年2月&#xff0c;Ajax第一次正式出现&#xff0c;从此以后Ajax成为JavaScript发起HTTP异步请求的代名词。2006…

【论文阅读】DALL·E: Zero-Shot Text-to-Image Generation

OpenAI第一代文本生成图片模型 paper&#xff1a;https://arxiv.org/abs/2102.12092 DALLE有120亿参数&#xff0c;基于自回归transformer&#xff0c;在2.5亿 图片-文本对上训练的。实现了高质量可控的text to image&#xff0c;同时也有zero-shot的能力。 DALL-E没有使用扩…

汽车螺丝扭力标准/汽车常见螺栓扭矩参照

汽车螺丝扭力标准参照表如下&#xff1a; 1、支座与车身螺栓(13MM)--25Nm&#xff1b; 2、支座与车身螺栓(18MM)--40Nm90度/50Nm&#xff1b; 3、支座与发动机支座螺栓(18Mm)--100Nm&#xff1b; 4、支座与车身螺栓(13MM)--25Nm&#xff1b; 5、支座与车身螺栓(18MM)--40N…

【Rust日报】2023-11-08 RustyVault -- 基于 rust 的现代秘密管理系统

RustyVault -- 基于 rust 的现代秘密管理系统 RustyVault 是一个用 Rust 编写的现代秘密管理系统。RustyVault 提供多种功能&#xff0c;支持多种场景&#xff0c;包括安全存储、云身份管理、秘密管理、Kubernetes 集成、PKI 基础设施、密码计算、传统密钥管理等。RustyVault 可…

面试10000次依然会问的【线程池】,你还不会?

线程池的基本概念 线程池是一种基于池化技术的线程使用方式&#xff0c;它允许我们有效地管理和复用线程&#xff0c;减少线程的创建和销毁的开销&#xff0c;从而提高系统的响应速度。在Java中&#xff0c;线程池的管理主要通过ThreadPoolExecutor类来实现。 线程池的定义与…

docker可视化

什么是portainer&#xff1f; portainer就是docker图形化界面的管理工具&#xff0c;提供一个后台面板供我们操作 目前先用portainer(先用这个)&#xff0c;以后还会用到Rancher(CI/CD在用) 1.下载portainer 9000是内网端口&#xff0c;8088是外网访问端口 docker run…

19 数据中心详解

1、数据中心的概念 其实平时我们不管是看新闻&#xff0c;视频&#xff0c;下载文件等&#xff0c;最终访问的目的地都是在数据中心里面。数据中心存放的是服务器&#xff0c;区别于我们平时使用的笔记本或者台式机。 机架&#xff1a;数据中心的服务器被放在一个个叫作机架&…

Go 接口:Go中最强大的魔法,接口应用模式或惯例介绍

Go 接口&#xff1a;Go中最强大的魔法,接口应用模式或惯例介绍 文章目录 Go 接口&#xff1a;Go中最强大的魔法,接口应用模式或惯例介绍一、前置原则二、一切皆组合2.1 一切皆组合2.2 垂直组合2.2.1 第一种&#xff1a;通过嵌入接口构建接口2.2.2 第二种&#xff1a;通过嵌入接…

Guli商城-商品服务-API-三级分类-配置网关路由与路径重写

启动人人fast服务&#xff1a; 打开本地的前端项目&#xff0c;启动&#xff1a; 命令&#xff1a;npm run dev 账号密码&#xff1a;admin/admin 对应的数据库&#xff1a; 接下来在商品系统目录中添加子菜单&#xff1a; 数据库中可以看到记录 退出账号&#xff0c;重新登录…

vue中实现千位分隔符

vue中实现千位分隔符有两种&#xff0c;一种是某一个字段转换&#xff0c;一种是表格table中的整列字段转换 比如将3236634.12&#xff0c;经过转换后变为 3,236,634.12 1. 某一个字段转换 写js方法&#xff1a; export function numberExchange(value){if (!value) return…