解决UniAD在高版本CUDA、pytorch下运行遇到的问题

news2024/12/28 2:54:58

UniADhttps://github.com/OpenDriveLab/UniAD是面向行车规划集感知(目标检测与跟踪)、建图(不是像SLAM那样对环境重建的建图,而是实时全景分割图像里的道路、隔离带等行车需关注的相关物体)、和轨迹规划和占用预测等多任务模块于一体的统一大模型。官网上的安装说明是按作者使用的较低版本的CUDA11.1.1和pytorch1.9.1来的,对应的mmcv也是较低版本的1.4版,我们工作服务器上的nvidia ngc docker环境里使用的这些支持工具软件早已是较高版本的,于是想在我们自己的环境里把UniAD跑起来,安装过程中遇到一些坑,最终都一一解决了,也实测过了,UniAD完全可以正常跑在CUDA11.6+pytorch1.12.0+mmcv1.6+mmseg0.24.0+mmdet2.24+mmdet3d1.0.0rc4组成的环境下。

安装和解决问题的步骤如下:

1.拉取使用CUDA11.6的NVIDIA NGC docker镜像并创建容器作为UniAD的运行环境

2.安装pytorch和torchvision:

pip install torch==1.12.0+cu116 torchvision==0.13.0+cu116 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu116

3.检查CUDA_HOME环境变量是否已设置,如果没有,则设置一下:

export CUDA_HOME=/usr/local/cuda

4.受CUDA和pytorch版本限制,mmcv需要安装比1.4高版本的1.6.0(关于openmmlab的mm序列框架包的安装版本对应关系参见: )
pip install mmcv-full==1.6.0 -f https://download.openmmlab.com/mmcv/dist/cu116/torch1.12.0/index.html

按照下面的对应关系:

分别安装mmdet2.24.0和mmseg0.24.0

pip install mmdet==2.24.0
pip install mmsegmentation==0.24.0

下载mmdetection3d源码然后切换到v1.0.0rc4版:

git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d

git checkout v1.0.0rc4

安装支持包并从源码编译和安装mmdet3d:

pip install scipy==1.7.3
pip install scikit-image==0.20.0
#将requirements/runtime.txt里修改一下numba的版本:
numba==0.53.1
#numba==0.53.0
pip install -v -e .

安装好了支持环境,然后下载和安装UniAD:

git clone https://github.com/OpenDriveLab/UniAD.git
cd UniAD

#修改一下requirements.txt里的numpy版本然后安装相关支持包:
#numpy==1.20.0
numpy==1.22.0
pip install -r requirements.txt

#下载相关预训练权重文件
mkdir ckpts && cd ckpts
wget https://github.com/zhiqi-li/storage/releases/download/v1.0/bevformer_r101_dcn_24ep.pth
wget https://github.com/OpenDriveLab/UniAD/releases/download/v1.0/uniad_base_track_map.pth
wget https://github.com/OpenDriveLab/UniAD/releases/download/v1.0.1/uniad_base_e2e.pth

加入NuScenes数据集已经下载好并解压存放到 ./data/下了,那么执行

./tools/uniad_dist_eval.sh ./projects/configs/stage1_track_map/base_track_map.py ./ckpts/uniad_base_track_map.pth 8

运行一下试试看,最后一个参数是GPU个数,我的工作环境和作者的工作环境一样都是8张A100卡,所以照着做,如果卡少,修改这个参数,例如使用1,也是可以跑的,只是比较慢。

第一次运行上面命令可能会遇到下面的问题:

1. partially initialized module 'cv2' has no attribute '_registerMatType' (most likely due to a circular import)

这是因为环境里的opencv-python版本太高了,版本不兼容引起的,我的是4.8.1.78,查了一下网上,需要降到4.5,执行下面的命令重新安装opencv-python4.5即可:

   pip install opencv-python==4.5.4.58

2. ImportError: libGL.so.1: cannot open shared object file: No such file or directory

安装libgl即可:

     sudo apt-get update && sudo apt-get install libgl1

3. AssertionError: MMCV==1.6.0 is used but incompatible. Please install mmcv>=(1, 3, 13, 0, 0, 0), <=(1, 5, 0, 0, 0, 0)

Traceback (most recent call last):
  File "tools/create_data.py", line 4, in <module>
    from data_converter import uniad_nuscenes_converter as nuscenes_converter
  File "/workspace/workspace_fychen/UniAD/tools/data_converter/uniad_nuscenes_converter.py", line 13, in <module>
    from mmdet3d.core.bbox.box_np_ops import points_cam2img
  File "/workspace/workspace_fychen/mmdetection3d/mmdet3d/__init__.py", line 5, in <module>
    import mmseg
  File "/opt/conda/lib/python3.8/site-packages/mmseg/__init__.py", line 58, in <module>
    assert (mmcv_min_version <= mmcv_version <= mmcv_max_version), \
AssertionError: MMCV==1.6.0 is used but incompatible. Please install mmcv>=(1, 3, 13, 0, 0, 0), <=(1, 5, 0, 0, 0, 0).

这错误是python3.8/site-packages/mmseg/__init__.py抛出来的,说明mmseg和mmcv1.6.0版本不兼容,它要求安装mmcv的1.3-1.5版,说明mmseg自身版本低了,原因是开始安装的mmsegmenation版本低了,改安装mmseg0.24.0即可。其它功能框架包遇到版本问题做类似处理。

4.KeyError: 'DiceCost is already registered in Match Cost'

Traceback (most recent call last):
  File "./tools/test.py", line 16, in <module>
    from projects.mmdet3d_plugin.datasets.builder import build_dataloader
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/__init__.py", line 3, in <module>
    from .core.bbox.match_costs import BBox3DL1Cost, DiceCost
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/core/bbox/match_costs/__init__.py", line 2, in <module>
    from .match_cost import BBox3DL1Cost, DiceCost
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/core/bbox/match_costs/match_cost.py", line 32, in <module>
    Traceback (most recent call last):
class DiceCost(object):
  File "/opt/conda/lib/python3.8/site-packages/mmcv/utils/registry.py", line 337, in _register
  File "./tools/test.py", line 16, in <module>
    from projects.mmdet3d_plugin.datasets.builder import build_dataloader
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/__init__.py", line 3, in <module>
    from .core.bbox.match_costs import BBox3DL1Cost, DiceCost
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/core/bbox/match_costs/__init__.py", line 2, in <module>
    from .match_cost import BBox3DL1Cost, DiceCost
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/core/bbox/match_costs/match_cost.py", line 32, in <module>
    class DiceCost(object):
  File "/opt/conda/lib/python3.8/site-packages/mmcv/utils/registry.py", line 337, in _register
        self._register_module(module=module, module_name=name, force=force)self._register_module(module=module, module_name=name, force=force)

  File "/opt/conda/lib/python3.8/site-packages/mmcv/utils/misc.py", line 340, in new_func
  File "/opt/conda/lib/python3.8/site-packages/mmcv/utils/misc.py", line 340, in new_func
    output = old_func(*args, **kwargs)
  File "/opt/conda/lib/python3.8/site-packages/mmcv/utils/registry.py", line 272, in _register_module
    raise KeyError(f'{name} is already registered '
KeyError: 'DiceCost is already registered in Match Cost''

这种类注册重复了的问题是因为UniAD的mmdet3d_plugin和我安装的mmdetection的文件python3.8/site-packages/mmdet/core/bbox/match_costs/match_cost.py里有同名的DiceCost类(UniAD作者使用的mmdetection版本较低应该没有这个问题),读mmcv里面python3.8/site-packages/mmcv/utils/registry.py的注册代码可以知道这个问题可以设置参数force=True来解决:

 @deprecated_api_warning(name_dict=dict(module_class='module'))
    def _register_module(self, module, module_name=None, force=False):
        if not inspect.isclass(module) and not inspect.isfunction(module):
            raise TypeError('module must be a class or a function, '
                            f'but got {type(module)}')

        if module_name is None:
            module_name = module.__name__
        if isinstance(module_name, str):
            module_name = [module_name]
        for name in module_name:
            if not force and name in self._module_dict:
                raise KeyError(f'{name} is already registered '
                               f'in {self.name}')
            self._module_dict[name] = module

为了保证UniAD代码能正确运行,允许UniAD的DiceCost类强制注册即可,也就是修改UniAD/projects/mmdet3d_plugin/core/bbox/match_costs/match_cost.py里DiceCost类的装饰器语句,增加force=True参数:

@MATCH_COST.register_module(force=True)
class DiceCost(object):

5.TypeError: cannot pickle 'dict_keys' object

File "./tools/test.py", line 261, in <module>
    main()
  File "./tools/test.py", line 231, in main
    outputs = custom_multi_gpu_test(model, data_loader, args.tmpdir,
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/uniad/apis/test.py", line 88, in custom_multi_gpu_test
    for i, data in enumerate(data_loader):
  File "/opt/conda/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 438, in __iter__
    return self._get_iterator()
  File "/opt/conda/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 384, in _get_iterator
    return _MultiProcessingDataLoaderIter(self)
  File "/opt/conda/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1048, in __init__
    w.start()
  File "/opt/conda/lib/python3.8/multiprocessing/process.py", line 121, in start
    self._popen = self._Popen(self)
  File "/opt/conda/lib/python3.8/multiprocessing/context.py", line 224, in _Popen
    return _default_context.get_context().Process._Popen(process_obj)
  File "/opt/conda/lib/python3.8/multiprocessing/context.py", line 284, in _Popen
    return Popen(process_obj)
  File "/opt/conda/lib/python3.8/multiprocessing/popen_spawn_posix.py", line 32, in __init__
    super().__init__(process_obj)
  File "/opt/conda/lib/python3.8/multiprocessing/popen_fork.py", line 19, in __init__
    self._launch(process_obj)
  File "/opt/conda/lib/python3.8/multiprocessing/popen_spawn_posix.py", line 47, in _launch
    reduction.dump(process_obj, fp)
  File "/opt/conda/lib/python3.8/multiprocessing/reduction.py", line 60, in dump
    ForkingPickler(file, protocol).dump(obj)
TypeError: cannot pickle 'dict_keys' object

解决办法参见 如何定位TypeError: cannot pickle dict_keys object错误原因及解决NuScenes数据集在多进程并发训练或测试时出现的这个错误-CSDN博客

6.protobuf报错 TypeError: Descriptors cannot not be created directly

Traceback (most recent call last):
  File "./tools/test.py", line 16, in <module>
    from projects.mmdet3d_plugin.datasets.builder import build_dataloader
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/__init__.py", line 5, in <module>
    from .datasets.pipelines import (
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/datasets/pipelines/__init__.py", line 6, in <module>
    from .occflow_label import GenerateOccFlowLabels
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/datasets/pipelines/occflow_label.py", line 5, in <module>
    from projects.mmdet3d_plugin.uniad.dense_heads.occ_head_plugin import calculate_birds_eye_view_parameters
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/uniad/__init__.py", line 2, in <module>
    from .dense_heads import *
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/uniad/dense_heads/__init__.py", line 4, in <module>
    from .occ_head import OccHead
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/uniad/dense_heads/occ_head.py", line 16, in <module>
    from .occ_head_plugin import MLP, BevFeatureSlicer, SimpleConv2d, CVT_Decoder, Bottleneck, UpsamplingAdd, \
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/uniad/dense_heads/occ_head_plugin/__init__.py", line 1, in <module>
    from .metrics import *
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/uniad/dense_heads/occ_head_plugin/metrics.py", line 10, in <module>
    from pytorch_lightning.metrics.metric import Metric
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/__init__.py", line 29, in <module>
    from pytorch_lightning.callbacks import Callback  # noqa: E402
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/callbacks/__init__.py", line 25, in <module>
    from pytorch_lightning.callbacks.swa import StochasticWeightAveraging
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/callbacks/swa.py", line 26, in <module>
    from pytorch_lightning.trainer.optimizers import _get_default_scheduler_config
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/trainer/__init__.py", line 18, in <module>
    from pytorch_lightning.trainer.trainer import Trainer
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 30, in <module>
    from pytorch_lightning.loggers import LightningLoggerBase
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/loggers/__init__.py", line 18, in <module>
    from pytorch_lightning.loggers.tensorboard import TensorBoardLogger
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/loggers/tensorboard.py", line 25, in <module>
    from torch.utils.tensorboard import SummaryWriter
  File "/opt/conda/lib/python3.8/site-packages/torch/utils/tensorboard/__init__.py", line 12, in <module>
    from .writer import FileWriter, SummaryWriter  # noqa: F401
  File "/opt/conda/lib/python3.8/site-packages/torch/utils/tensorboard/writer.py", line 9, in <module>
    from tensorboard.compat.proto.event_pb2 import SessionLog
  File "/opt/conda/lib/python3.8/site-packages/tensorboard/compat/proto/event_pb2.py", line 17, in <module>
    from tensorboard.compat.proto import summary_pb2 as tensorboard_dot_compat_dot_proto_dot_summary__pb2
  File "/opt/conda/lib/python3.8/site-packages/tensorboard/compat/proto/summary_pb2.py", line 17, in <module>
    from tensorboard.compat.proto import tensor_pb2 as tensorboard_dot_compat_dot_proto_dot_tensor__pb2
  File "/opt/conda/lib/python3.8/site-packages/tensorboard/compat/proto/tensor_pb2.py", line 16, in <module>
    from tensorboard.compat.proto import resource_handle_pb2 as tensorboard_dot_compat_dot_proto_dot_resource__handle__pb2
  File "/opt/conda/lib/python3.8/site-packages/tensorboard/compat/proto/resource_handle_pb2.py", line 16, in <module>
    from tensorboard.compat.proto import tensor_shape_pb2 as tensorboard_dot_compat_dot_proto_dot_tensor__shape__pb2
  File "/opt/conda/lib/python3.8/site-packages/tensorboard/compat/proto/tensor_shape_pb2.py", line 36, in <module>
    _descriptor.FieldDescriptor(
  File "/opt/conda/lib/python3.8/site-packages/google/protobuf/descriptor.py", line 561, in __new__
    _message.Message._CheckCalledFromGeneratedFile()
TypeError: Descriptors cannot not be created directly.
If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.
If you cannot immediately regenerate your protos, some other possible workarounds are:
 1. Downgrade the protobuf package to 3.20.x or lower.
 2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).

我的protobuf版本4.24.4太高了,降为3.20后就可以了:

       pip install protobuf==3.20

7. TypeError: expected str, bytes or os.PathLike object, not _io.BufferedReader

Traceback (most recent call last):
  File "/opt/conda/lib/python3.8/site-packages/mmcv/utils/registry.py", line 69, in build_from_cfg
    return obj_cls(**args)
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/datasets/nuscenes_e2e_dataset.py", line 78, in __init__
    super().__init__(*args, **kwargs)
  File "/workspace/workspace_fychen/mmdetection3d/mmdet3d/datasets/nuscenes_dataset.py", line 131, in __init__
    super().__init__(
  File "/workspace/workspace_fychen/mmdetection3d/mmdet3d/datasets/custom_3d.py", line 88, in __init__
    self.data_infos = self.load_annotations(open(local_path, 'rb'))
  File "/workspace/workspace_fychen/UniAD/projects/mmdet3d_plugin/datasets/nuscenes_e2e_dataset.py", line 152, in load_annotations
    data = pickle.loads(self.file_client.get(ann_file))
  File "/opt/conda/lib/python3.8/site-packages/mmcv/fileio/file_client.py", line 1014, in get
    return self.client.get(filepath)
  File "/opt/conda/lib/python3.8/site-packages/mmcv/fileio/file_client.py", line 535, in get
    with open(filepath, 'rb') as f:
TypeError: expected str, bytes or os.PathLike object, not _io.BufferedReader

问题原因出现在高版本的mmdetection3d/mmdet3d/datasets/custom_3d.py里考虑了支持local_path读取文件,传入load_annotations()的就是个io句柄了:

def __init__(self,
                 data_root,
                 ann_file,
                 pipeline=None,
                 classes=None,
                 modality=None,
                 box_type_3d='LiDAR',
                 filter_empty_gt=True,
                 test_mode=False,
                 file_client_args=dict(backend='disk')):
        super().__init__()
        self.data_root = data_root
        self.ann_file = ann_file
        self.test_mode = test_mode
        self.modality = modality
        self.filter_empty_gt = filter_empty_gt
        self.box_type_3d, self.box_mode_3d = get_box_type(box_type_3d)

        self.CLASSES = self.get_classes(classes)
        self.file_client = mmcv.FileClient(**file_client_args)
        self.cat2id = {name: i for i, name in enumerate(self.CLASSES)}

        # load annotations
        if not hasattr(self.file_client, 'get_local_path'):
            with self.file_client.get_local_path(self.ann_file) as local_path:
                self.data_infos = self.load_annotations(open(local_path, 'rb'))
        else:
            warnings.warn(
                'The used MMCV version does not have get_local_path. '
                f'We treat the {self.ann_file} as local paths and it '
                'might cause errors if the path is not a local path. '
                'Please use MMCV>= 1.3.16 if you meet errors.')
            self.data_infos = self.load_annotations(self.ann_file)

根源是UniAD的UniAD/projects/mmdet3d_plugin/datasets/nuscenes_e2e_dataset.py里

在实现load_annotations()时默认是只支持使用ann_file是字符串类型,所以这里强制修改一下mmdetection3d/mmdet3d/datasets/custom_3d.py改回使用self.data_infos = self.load_annotations(self.ann_file)即可。

8. RuntimeError: DataLoader worker (pid 33959) is killed by signal: Killed

前面的7个问题都解决后,如果NuScenes数据集是完整的且位置正确的话,运行下面的命令应该都可以运行:

./tools/uniad_dist_eval.sh ./projects/configs/stage1_track_map/base_track_map.py ./ckpts/uniad_base_track_map.pth 8
./tools/uniad_dist_eval.sh ./projects/configs/stage2_e2e/base_e2e.py ./ckpts/uniad_base_e2e.pth 8

但是可能会在循环读取数据时发生超时错误而导致dataloader所在进程被杀掉:

Traceback (most recent call last):
  File "/opt/conda/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1134, in _try_get_data
    data = self._data_queue.get(timeout=timeout)
  File "/opt/conda/lib/python3.8/multiprocessing/queues.py", line 107, in get
    if not self._poll(timeout):
  File "/opt/conda/lib/python3.8/multiprocessing/connection.py", line 257, in poll
    return self._poll(timeout)
  File "/opt/conda/lib/python3.8/multiprocessing/connection.py", line 424, in _poll
    r = wait([self], timeout)
  File "/opt/conda/lib/python3.8/multiprocessing/connection.py", line 936, in wait
    timeout = deadline - time.monotonic()
  File "/opt/conda/lib/python3.8/site-packages/torch/utils/data/_utils/signal_handling.py", line 66, in handler
    _error_if_any_worker_fails()
RuntimeError: DataLoader worker (pid 33959) is killed by signal: Killed.

查了一下,发现原因是配置文件projects/configs/stage1_track_map/base_track_map.py和projects/configs/stage2_e2e/base_e2e.py里的workers_per_gpu=8的设置对我们的服务器来说太多了,改为2后,再运行上面的命令可以顺利执行完毕。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1189349.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Android中 Applicaton Context,Service context, Activity context 的区别。

Context类图 类间关系&#xff1a;https://weichao.blog.csdn.net/article/details/129969122 Context是一个抽象类&#xff0c;定义了接口&#xff0c;它的实现类是ContextImpl类。 ContextWrapper是Context的派生类&#xff0c;它实现了Context类的接口。但是ContextWrappe…

智能消火栓远程监测方案

随着城市化进程的加速&#xff0c;城市安全问题日益凸显。消火栓作为城市消防系统的重要组成部分&#xff0c;其状态监测和及时维修至关重要。本文将为大家深入介绍一种创新的消火栓远程监测方案&#xff0c;帮助大家更好地了解其原理、优势和应用价值。 近年来&#xff0c;城…

【强化学习】结合Python实战深入分析原理

【文末送书】今天推荐一本强化学习领域优质Python算法书籍&#xff0c;揭密ChatGPT关键技术PPO和RLHF。 目录 前言时间旅行和平行宇宙强化学习策略梯度算法代码案例文末送书 前言 时间循环是一类热门的影视题材&#xff0c;其设定常常如下&#xff1a;主人公可以主动或被动的回…

第二次pta认证P测试C++

#include <iostream> using namespace std; int f(int n){if (n0){return 1;}if (n1){return 3;}return 4*f(n-1)-f(n-2); } int n; int main() {cin>>n;cout<<f(n);return 0; }第二题 试题编号&#xff1a;2022-13-0302 试题名称&#xff1a;长正整数相加 …

聊一聊被人嘲笑的if err!=nil和golang为什么要必须支持多返回值?

golang多返回值演示 我们知道&#xff0c;多返回值是golang的一个特性&#xff0c;比如下面这段代码,里面的参数名我起了几个比较好区分的 package mainfunc main() {Swap(10999, 10888) }func Swap(saaa, sbbb int) (int, int) {return sbbb, saaa }golang为什么要支持多返回…

obs whip 100ms端到端时延 webrtc验证

obs----whip---->媒体服务-----whep-----→chrome播放器&#xff08;webrtc demo&#xff09; 所有软件在同一台机器 1&#xff09;h264251080p 平均时延&#xff1a;162.8ms 采样点ms&#xff1a;167151168169151168166168167153 2&#xff09;h264301080p 平均时延&…

算法--数据结构

这里写目录标题 本节内容链表与邻接表链表主要思想链表操作初始化在head结点后面插入普通插入删除操作 例子 双链表&#xff08;双向循环链表&#xff09;主要思想操作初始化双向插入删除第k个点 邻接表主要思想 栈和队列栈主要思想主要操作 队列主要思想操作 单调栈与单调队列…

【Git】深入了解Git及其常用命令

&#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 接下来看看由辉辉所写的关于Git的相关操作吧 目录 &#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 一.Git是什么 二.SVN和Git的区别 三.Git的…

[Vue warn]: Missing required prop: “action“

控制台显示错误信息 vue.runtime.esm.js:4605 [Vue warn]: Missing required prop: "action" found in ---> <ElUpload> at packages/upload/src/index.vue <ElTableRow> <ElTableBody> <ElTable> at pack…

2023年开发语言和数据库排行

2023年开发语言和数据库排行 一、开发语言相关1. Python1.1 Python优点1.2 Python缺点1.3 Python应用领域 2. C 语言2.1 C 语言优点2.2 C 语言缺点2.3 C语言应用领域 3. Java3.1 Java 优点3.2 Java缺点3.3 Java应用场景 4. C4.1 C 优点4.2 C 缺点4.3 C 应用场景 5. C#5.1 C# 优…

金蝶云星空二开单据明细按钮绑定了权限项但是没控制到权限的问题排查

文章目录 金蝶云星空二开单据明细按钮绑定了权限项但是没控制到权限的问题排查明细按钮&#xff1a;行关闭和行反关闭&#xff0c;分别绑定了SCM_ROWCLOSE和SCM_ROWUNCLOSE解决方案 金蝶云星空二开单据明细按钮绑定了权限项但是没控制到权限的问题排查 明细按钮&#xff1a;行…

ros1 实现Server端自定义四 Topic模式控制海龟运动

一、服务模型 Server端本身是进行模拟海龟运动的命令端&#xff0c;它的实现是通过给海龟发送速度&#xff08;Twist&#xff09;的指令&#xff0c;来控制海龟运动&#xff08;本身通过Topic实现&#xff09;。 Client端相当于海龟运动的开关&#xff0c;其发布Request来控制…

深入理解强化学习——多臂赌博机:梯度赌博机算法的基础知识

分类目录&#xff1a;《深入理解强化学习》总目录 到目前为止&#xff0c;我们已经探讨了评估动作价值的方法&#xff0c;并使用这些估计值来选择动作。这通常是一个好方法&#xff0c;但并不是唯一可使用的方法。我们针对每个动作 a a a考虑学习一个数值化的偏好函数 H t ( a …

Netty入门指南之NIO 粘包与半包

作者简介&#xff1a;☕️大家好&#xff0c;我是Aomsir&#xff0c;一个爱折腾的开发者&#xff01; 个人主页&#xff1a;Aomsir_Spring5应用专栏,Netty应用专栏,RPC应用专栏-CSDN博客 当前专栏&#xff1a;Netty应用专栏_Aomsir的博客-CSDN博客 文章目录 参考文献前言问题产…

电脑篇——本地串口转TCP,TCP转虚拟串口,网络调试助手,串口调试助手

TCP/UDP工具、串口工具 https://pan.baidu.com/s/1SY03d_RRVhyOZfsPlApmxg?pwd5555 今日有个需求&#xff0c;就是在本机电脑上接了一个串口设备&#xff0c;然后我的QtCreator是在内网远程电脑运行的&#xff0c;我想将串口设备“挂载”到远程电脑上去调试程序&#xff0c;于…

【Mysql】增删改查(基础版)

我使用的工具是Data Grip &#xff08;SQLyog Naivact 都行&#xff09; 使用Data Grip创建student表&#xff0c;具体步骤如下&#xff08;熟悉Data Grip或者使用SQLyog&#xff0c;Naivact可以跳过&#xff09; https://blog.csdn.net/m0_67930426/article/details/13429…

金蝶云星空下游单据的操作控制上游单据的状态转换开发方案

文章目录 金蝶云星空下游单据的操作控制上游单据的状态转换开发方案说明方案设计开发实现售后单增加变更状态反写规则反写状态&#xff1a;在保存配置了反写状态保存后删除&#xff0c;反写规则不生效&#xff0c;需要在删除操作配置插件根据关联关系进行反写生效操作&#xff…

如何实现云端开发能力快速提升?【DevRun】云上开发创新实践带你实现

随着企业数字化的转型趋势&#xff0c;软件成为数字化转型的关键驱动力&#xff0c;在云计算越来越普及且作用愈发重要的今天&#xff0c;现代应用正以难以想象的速度在增长&#xff0c;同时对软件开发工具提出了新的要求。 华为云CodeArts作为一站式云上开发创新工具&#xf…

从零开始:PRD产品需求文档怎么写

产品需求文档&#xff08;PRD&#xff09;是所有产品开发项目的关键环节&#xff0c;它的主要职责是传递关于即将开发的产品的所有核心信息给团队。作为一名Pixso设计师&#xff0c;我们清楚这个过程可能显得复杂和耗费精力&#xff0c;但这并不意味着我们不能让它变得更为简洁…

国产猫罐头可以长期作为主食吗?我家的优质TOP的猫罐头分享

我最近一直在调查国产猫罐头可以长期作为主食吗&#xff1f;看看我的购物订单&#xff0c;我已经尝试了几十款了。今天&#xff0c;我想和大家分享一些关于国产猫罐头的经验和见解。 近年来&#xff0c;国产宠粮市场取得了突破性的进展&#xff0c;各个猫粮商在配方、营养数据…