OpenCV实现手势虚拟拖拽

news2024/11/26 18:20:33

前言: Hello大家好,我是Dream。 今天来学习一下如何使用OpenCV实现手势虚拟拖拽,欢迎大家一起前来探讨学习~

一、主要步骤及库的功能介绍

1.主要步骤

要实现本次实验,主要步骤如下:

  1. 导入OpenCV库。
  2. 通过OpenCV读取摄像头的视频流。
  3. 使用肤色检测算法(如色彩空间转换和阈值分割)来识别手部区域。
  4. 对手部区域进行轮廓检测,找到手的轮廓。
  5. 根据手的轮廓,获取手指关键点的像素坐标。对于拖拽手势,可以关注食指和中指的位置。
  6. 计算食指和中指指尖之间的距离并判断是否满足条件触发拖拽动作。
  7. 如果满足条件,可以使用勾股定理计算距离,并将矩形区域变色以示触发拖拽。
  8. 根据手指的位置更新矩形的坐标,使矩形跟随手指运动。
  9. 当手指放开时停止矩形的移动。

2.需要的库介绍

导入的库在实现手势虚拟拖拽的代码中起着重要的作用,下面是对每个库的简要介绍:

  1. OpenCV (cv2): OpenCV是一个开源的计算机视觉库,提供了丰富的图像和视频处理功能,使用OpenCV来读取摄像头视频流、进行图像处理和计算

  2. mediapipe (mp): mediapipe提供一系列预训练的机器学习模型和工具,用于实现计算机视觉和机器学习任务。我们使用mediapipe来进行手部关键点检测和姿势估计

  3. time: 我们使用time库来计时和进行时间相关的操作。

  4. math: 在本次实验我们使用math库来计算距离和角度

二、导入所需要的模块

# 导入OpenCV
import cv2
# 导入mediapipe
import mediapipe as mp

# 导入其他依赖包
import time
import math

三、方块管理类

(SquareManager)是一个方块管理器,用于创建、显示、更新和处理方块的相关操作。

1.初始化方块管理器

初始化方块管理器,传入方块的长度(rect_width)作为参数,并初始化方块列表、距离、激活状态和激活的方块ID等属性。

class SquareManager:
    def __init__(self, rect_width):
        # 方框长度
        self.rect_width = rect_width

        # 方块列表
        self.square_count = 0
        self.rect_left_x_list = []
        self.rect_left_y_list = []
        self.alpha_list = []

        # 中指与矩形左上角点的距离
        self.L1 = 0
        self.L2 = 0

        # 激活移动模式
        self.drag_active = False

        # 激活的方块ID
        self.active_index = -1

2.创建一个方块

创建一个方块,将方块的左上角坐标和透明度添加到相应的列表中。

# 创建一个方块,但是没有显示
    def create(self, rect_left_x, rect_left_y, alpha=0.4):
        # 将方块的左上角坐标和透明度添加到相应的列表中
        self.rect_left_x_list.append(rect_left_x)
        self.rect_left_y_list.append(rect_left_y)
        self.alpha_list.append(alpha)
        self.square_count += 1

3.更新显示方块的位置

根据方块的状态,在图像上绘制方块,并使用透明度将叠加图像叠加到原始图像上。

 # 更新显示方块的位置
    def display(self, class_obj):
        # 遍历方块列表
        for i in range(0, self.square_count):
            x = self.rect_left_x_list[i]
            y = self.rect_left_y_list[i]
            alpha = self.alpha_list[i]

            overlay = class_obj.image.copy()
             # 如果方块处于激活状态,绘制紫色方块;否则绘制蓝色方块
            if (i == self.active_index):
                cv2.rectangle(overlay, (x, y), (x + self.rect_width, y + self.rect_width), (255, 0, 255), -1)
            else:
                cv2.rectangle(overlay, (x, y), (x + self.rect_width, y + self.rect_width), (255, 0, 0), -1)

            # 使用透明度将叠加图像叠加到原始图像上
            class_obj.image = cv2.addWeighted(overlay, alpha, class_obj.image, 1 - alpha, 0)

4.判断落点方块

判断给定的坐标是否在方块内,并返回方块的ID。

    # 判断落在哪个方块上,返回方块的ID
    def checkOverlay(self, check_x, check_y):
        # 遍历方块列表
        for i in range(0, self.square_count):
            x = self.rect_left_x_list[i]
            y = self.rect_left_y_list[i]

            # 检查指定点是否在方块内
            if (x < check_x < (x + self.rect_width)) and (y < check_y < (y + self.rect_width)):
                # 保存被激活的方块ID
                self.active_index = i
                return i

        return -1

5.计算距离、更新位置

​​setLen​ 方法:计算激活方块与指尖的距离。
​​updateSquare​ 方法:根据给定的新坐标更新激活方块的位置。

    # 计算与指尖的距离
    def setLen(self, check_x, check_y):
        # 计算距离
        self.L1 = check_x - self.rect_left_x_list[self.active_index]
        self.L2 = check_y - self.rect_left_y_list[self.active_index]

    # 更新方块位置
    def updateSquare(self, new_x, new_y):
        self.rect_left_x_list[self.active_index] = new_x - self.L1
        self.rect_left_y_list[self.active_index] = new_y - self.L2

三、识别控制类

1.初始化识别控制类

class HandControlVolume:
    def __init__(self):
        # 初始化mediapipe
        self.mp_drawing = mp.solutions.drawing_utils
        self.mp_drawing_styles = mp.solutions.drawing_styles
        self.mp_hands = mp.solutions.hands

        # 中指与矩形左上角点的距离
        self.L1 = 0
        self.L2 = 0

        # image实例,以便另一个类调用
        self.image = None

HandControlVolume用于初始化mediapipe以及存储中指与矩形左上角点的距离和image实例。

  • __init__ 方法:在初始化对象时,初始化mediapipe,包括drawing_utils、drawing_styles和hands。此外,还初始化了中指与矩形左上角点的距离和image实例。

通过mediapipe,可以进行手部关键点检测和姿势估计,进而进行手势识别和处理。为了使其他类能够调用image实例,将其作为该类的属性进行存储,方便地处理手势识别和控制操作。

2.主函数

这部分代码主要用于初始化和准备处理视频流以进行手势识别和交互。

    def recognize(self):
        # 计算刷新率
        fpsTime = time.time()

        # OpenCV读取视频流
        cap = cv2.VideoCapture(0)
        # 视频分辨率
        resize_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        resize_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

        # 画面显示初始化参数
        rect_percent_text = 0

        # 初始化方块管理器
        squareManager = SquareManager(150)

        # 创建多个方块
        for i in range(0, 5):
            squareManager.create(200 * i + 20, 200, 0.6)

        with self.mp_hands.Hands(min_detection_confidence=0.7,
                                 min_tracking_confidence=0.5,
                                 max_num_hands=2) as hands:
            while cap.isOpened():

                # 初始化矩形
                success, self.image = cap.read()
                self.image = cv2.resize(self.image, (resize_w, resize_h))

                if not success:
                    print("空帧.")
                    continue
  • resize_wresize_h:根据摄像头分辨率获取的视频帧的宽度和高度,并作为后续处理的图像尺寸进行缩放。

  • rect_percent_text:画面显示初始化参数,可能被用于屏幕上的文本显示。

  • squareManager:初始化了方块管理器类的实例,并设置方块的长度为150。

使用一个循环,创建了五个方块,并通过create方法将其添加到方块管理器中。进入循环,从视频流中读取帧图像,并将其调整为指定的尺寸。如果成功读取帧图像,则会进一步处理,否则将输出错误消息。

3.提高性能和处理图像

                self.image.flags.writeable = False
                # 转为RGB
                self.image = cv2.cvtColor(self.image, cv2.COLOR_BGR2RGB)
                # 镜像
                self.image = cv2.flip(self.image, 1)
                # mediapipe模型处理
                results = hands.process(self.image)

                self.image.flags.writeable = True
                self.image = cv2.cvtColor(self.image, cv2.COLOR_RGB2BGR)
  • self.image.flags.writeable = False:设置图像为不可写,以提高性能并避免数据拷贝。

  • self.image = cv2.cvtColor(self.image, cv2.COLOR_BGR2RGB):将BGR格式的图像转换为RGB格式,因为mediapipe模型处理的输入图像需要是RGB格式。

  • self.image = cv2.flip(self.image, 1):将图像进行镜像翻转,以与mediapipe模型期望的手部位置对应。

  • results = hands.process(self.image):将处理后的图像传递给mediapipe的hands模型,进行手势识别和处理。

  • self.image = cv2.cvtColor(self.image, cv2.COLOR_RGB2BGR):将图像从RGB格式转换回BGR格式,以便后续的显示和处理。

4.检测手掌,标记关键点和连接关系

                if results.multi_hand_landmarks:
                    # 遍历每个手掌
                    for hand_landmarks in results.multi_hand_landmarks:
                        # 在画面标注手指
                        self.mp_drawing.draw_landmarks(
                            self.image,
                            hand_landmarks,
                            self.mp_hands.HAND_CONNECTIONS,
                            self.mp_drawing_styles.get_default_hand_landmarks_style(),
                            self.mp_drawing_styles.get_default_hand_connections_style())
  • if results.multi_hand_landmarks::检查是否检测到手掌。如果有检测到手掌,则进入下一步处理;否则跳过。

  • for hand_landmarks in results.multi_hand_landmarks::遍历检测到的每个手掌。

  • self.mp_drawing.draw_landmarks:使用mediapipe的draw_landmarks方法,在图像上标记手指的关键点和连接关系。

self.image:输入的图像。hand_landmarks:手掌的关键点。

self.mp_hands.HAND_CONNECTIONS:手指之间的连接关系。

5.解析检测到的手掌并提取手指的关键点

检测到的手掌并提取手指的关键点,然后将手指的坐标存储起来。

                        landmark_list = []

                        # 用来存储手掌范围的矩形坐标
                        paw_x_list = []
                        paw_y_list = []
                        for landmark_id, finger_axis in enumerate(
                                hand_landmarks.landmark):
                            landmark_list.append([
                                landmark_id, finger_axis.x, finger_axis.y,
                                finger_axis.z
                            ])
                            paw_x_list.append(finger_axis.x)
                            paw_y_list.append(finger_axis.y)
                        if landmark_list:
                            # 比例缩放到像素
                            ratio_x_to_pixel = lambda x: math.ceil(x * resize_w)
                            ratio_y_to_pixel = lambda y: math.ceil(y * resize_h)

                            # 设计手掌左上角、右下角坐标
                            paw_left_top_x, paw_right_bottom_x = map(ratio_x_to_pixel,
                                                                     [min(paw_x_list), max(paw_x_list)])
                            paw_left_top_y, paw_right_bottom_y = map(ratio_y_to_pixel,
                                                                     [min(paw_y_list), max(paw_y_list)])

                            # 给手掌画框框
                            cv2.rectangle(self.image, (paw_left_top_x - 30, paw_left_top_y - 30),
                                          (paw_right_bottom_x + 30, paw_right_bottom_y + 30), (0, 255, 0), 2)

                            # 获取中指指尖坐标
                            middle_finger_tip = landmark_list[12]
                            middle_finger_tip_x = ratio_x_to_pixel(middle_finger_tip[1])
                            middle_finger_tip_y = ratio_y_to_pixel(middle_finger_tip[2])

                            # 获取食指指尖坐标
                            index_finger_tip = landmark_list[8]
                            index_finger_tip_x = ratio_x_to_pixel(index_finger_tip[1])
                            index_finger_tip_y = ratio_y_to_pixel(index_finger_tip[2])
                            # 中间点
                            between_finger_tip = (middle_finger_tip_x + index_finger_tip_x) // 2, (
                                        middle_finger_tip_y + index_finger_tip_y) // 2

                            thumb_finger_point = (middle_finger_tip_x, middle_finger_tip_y)
                            index_finger_point = (index_finger_tip_x, index_finger_tip_y)

  • landmark_list:一个列表,用于存储手指的关键点信息。

  • paw_x_listpaw_y_list:用于存储手掌范围的矩形框的横纵坐标。

  • 在循环中,将每个手指的关键点的索引、x坐标、y坐标和z坐标存储在landmark_list中,同时将手掌范围的横纵坐标存储在paw_x_listpaw_y_list中。

如果landmark_list不为空,即有手指的关键点被检测到ratio_x_to_pixelratio_y_to_pixel:两个lambda函数,用于将相对比例转换为像素坐标的函数。根据手掌范围的矩形坐标,计算手掌区域的左上角和右下角坐标,并画出方框。使用landmark_list中的信息获取中指指尖坐标和食指指尖坐标,并将它们转换为像素坐标。计算中指指尖坐标和食指指尖坐标的中间点。将中指指尖的坐标和食指指尖的坐标存储在thumb_finger_pointindex_finger_point中。

解析检测到的手掌信息,并提取手指的关键点坐标,将手指坐标转换为像素坐标,并将中指指尖和食指指尖的位置标记在图像上。

6.绘制指尖圆圈和连接线,计算距离

                            circle_func = lambda point: cv2.circle(self.image, point, 10, (255, 0, 255), -1)
                            self.image = circle_func(thumb_finger_point)
                            self.image = circle_func(index_finger_point)
                            self.image = circle_func(between_finger_tip)
                            # 画2点连线
                            self.image = cv2.line(self.image, thumb_finger_point, index_finger_point, (255, 0, 255), 5)
                            # 勾股定理计算长度
                            line_len = math.hypot((index_finger_tip_x - middle_finger_tip_x),
                                                  (index_finger_tip_y - middle_finger_tip_y))
                            # 将指尖距离映射到文字
                            rect_percent_text = math.ceil(line_len)
  • cv2.line函数,在图像上绘制中指指尖和食指指尖之间的连接线。

  • math.hypot函数计算直角三角形斜边的长度。

  • 将指尖之间的距离映射到rect_percent_text变量中,用作后续文本显示的参数。

7.跟踪手指之间的距离

                            if squareManager.drag_active:
                                # 更新方块
                                squareManager.updateSquare(between_finger_tip[0], between_finger_tip[1])
                                if (line_len > 100):
                                    # 取消激活
                                    squareManager.drag_active = False
                                    squareManager.active_index = -1

                            elif (line_len < 100) and (squareManager.checkOverlay(between_finger_tip[0],
                                                                                  between_finger_tip[1]) != -1) and (
                                    squareManager.drag_active == False):
                                # 激活
                                squareManager.drag_active = True
                                # 计算距离
                                squareManager.setLen(between_finger_tip[0], between_finger_tip[1])

如果squareManagerdrag_active属性为True,即矩形的移动模式已经激活,使用squareManager.updateSquare方法更新矩形的位置。如果两个手指之间的距离大于100,即手指之间的距离超过了阈值,取消矩形的激活模式,将drag_active设置为False,将active_index设置为-1。

否则,如果两个手指之间的距离小于100,且手指之间存在重叠的矩形,并且矩形的移动模式未激活。激活矩形的移动模式,将drag_active设置为True。根据手指之间的距离,计算并设置矩形的长度,使用squareManager.setLen方法。

8.显示图像

                squareManager.display(self)

                # 显示距离
                cv2.putText(self.image, "Distance:" + str(rect_percent_text), (10, 120), cv2.FONT_HERSHEY_PLAIN, 3,
                            (255, 0, 0), 3)

                # 显示当前激活
                cv2.putText(self.image, "Active:" + (
                    "None" if squareManager.active_index == -1 else str(squareManager.active_index)), (10, 170),
                            cv2.FONT_HERSHEY_PLAIN, 3, (255, 0, 0), 3)

                # 显示刷新率FPS
                cTime = time.time()
                fps_text = 1 / (cTime - fpsTime)
                fpsTime = cTime
                cv2.putText(self.image, "FPS: " + str(int(fps_text)), (10, 70),
                            cv2.FONT_HERSHEY_PLAIN, 3, (255, 0, 0), 3)
                # 显示画面
                cv2.imshow('virtual drag and drop', self.image)

                if cv2.waitKey(5) & 0xFF == 27:
                    break
            cap.release()

control = HandControlVolume()
control.recognize()

主函数(recognize)的结尾部分,用于显示图像、矩形的状态和刷新率,并等待按键响应。使用squareManager.display方法显示矩形。cv2.waitKey函数等待按键输入,如果按下的键是ESC键(对应的ASCII码为27),则退出循环。

在屏幕上显示处理后的图像、矩形的状态和刷新率,并等待按键响应。这样可以实现交互式的虚拟拖放功能。接下来我们看一下实际的操作效果。

四、实战演示

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

通过演示我们可以实现通过手部对方块进行拖拽,效果可以达到良好的状态。

五、源码分享

import cv2
import mediapipe as mp
import time
import math
class SquareManager:
    def __init__(self, rect_width):

        # 方框长度
        self.rect_width = rect_width

        # 方块list
        self.square_count = 0
        self.rect_left_x_list = []
        self.rect_left_y_list = []
        self.alpha_list = []

        # 中指与矩形左上角点的距离
        self.L1 = 0
        self.L2 = 0

        # 激活移动模式
        self.drag_active = False

        # 激活的方块ID
        self.active_index = -1

    # 创建一个方块,但是没有显示
    def create(self, rect_left_x, rect_left_y, alpha=0.4):
        self.rect_left_x_list.append(rect_left_x)
        self.rect_left_y_list.append(rect_left_y)
        self.alpha_list.append(alpha)
        self.square_count += 1

    # 更新位置
    def display(self, class_obj):
        for i in range(0, self.square_count):
            x = self.rect_left_x_list[i]
            y = self.rect_left_y_list[i]
            alpha = self.alpha_list[i]

            overlay = class_obj.image.copy()

            if (i == self.active_index):
                cv2.rectangle(overlay, (x, y), (x + self.rect_width, y + self.rect_width), (255, 0, 255), -1)
            else:
                cv2.rectangle(overlay, (x, y), (x + self.rect_width, y + self.rect_width), (255, 0, 0), -1)

            # Following line overlays transparent rectangle over the self.image
            class_obj.image = cv2.addWeighted(overlay, alpha, class_obj.image, 1 - alpha, 0)

    # 判断落在哪个方块上,返回方块的ID
    def checkOverlay(self, check_x, check_y):
        for i in range(0, self.square_count):
            x = self.rect_left_x_list[i]
            y = self.rect_left_y_list[i]

            if (x < check_x < (x + self.rect_width)) and (y < check_y < (y + self.rect_width)):
                # 保存被激活的方块ID
                self.active_index = i

                return i

        return -1

    # 计算与指尖的距离
    def setLen(self, check_x, check_y):
        # 计算距离
        self.L1 = check_x - self.rect_left_x_list[self.active_index]
        self.L2 = check_y - self.rect_left_y_list[self.active_index]

    # 更新方块    
    def updateSquare(self, new_x, new_y):
        # print(self.rect_left_x_list[self.active_index])
        self.rect_left_x_list[self.active_index] = new_x - self.L1
        self.rect_left_y_list[self.active_index] = new_y - self.L2


# 识别控制类
class HandControlVolume:
    def __init__(self):
        # 初始化medialpipe
        self.mp_drawing = mp.solutions.drawing_utils
        self.mp_drawing_styles = mp.solutions.drawing_styles
        self.mp_hands = mp.solutions.hands

        # 中指与矩形左上角点的距离
        self.L1 = 0
        self.L2 = 0

        # image实例,以便另一个类调用
        self.image = None

    # 主函数
    def recognize(self):
        # 计算刷新率
        fpsTime = time.time()

        # OpenCV读取视频流
        cap = cv2.VideoCapture(0)
        # 视频分辨率
        resize_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        resize_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

        # 画面显示初始化参数
        rect_percent_text = 0

        # 初始化方块管理器
        squareManager = SquareManager(150)

        # 创建多个方块
        for i in range(0, 5):
            squareManager.create(200 * i + 20, 200, 0.6)

        with self.mp_hands.Hands(min_detection_confidence=0.7,
                                 min_tracking_confidence=0.5,
                                 max_num_hands=2) as hands:
            while cap.isOpened():

                # 初始化矩形
                success, self.image = cap.read()
                self.image = cv2.resize(self.image, (resize_w, resize_h))

                if not success:
                    print("空帧.")
                    continue

                # 提高性能
                self.image.flags.writeable = False
                # 转为RGB
                self.image = cv2.cvtColor(self.image, cv2.COLOR_BGR2RGB)
                # 镜像
                self.image = cv2.flip(self.image, 1)
                # mediapipe模型处理
                results = hands.process(self.image)

                self.image.flags.writeable = True
                self.image = cv2.cvtColor(self.image, cv2.COLOR_RGB2BGR)
                # 判断是否有手掌
                if results.multi_hand_landmarks:
                    # 遍历每个手掌
                    for hand_landmarks in results.multi_hand_landmarks:
                        # 在画面标注手指
                        self.mp_drawing.draw_landmarks(
                            self.image,
                            hand_landmarks,
                            self.mp_hands.HAND_CONNECTIONS,
                            self.mp_drawing_styles.get_default_hand_landmarks_style(),
                            self.mp_drawing_styles.get_default_hand_connections_style())

                        # 解析手指,存入各个手指坐标
                        landmark_list = []

                        # 用来存储手掌范围的矩形坐标
                        paw_x_list = []
                        paw_y_list = []
                        for landmark_id, finger_axis in enumerate(
                                hand_landmarks.landmark):
                            landmark_list.append([
                                landmark_id, finger_axis.x, finger_axis.y,
                                finger_axis.z
                            ])
                            paw_x_list.append(finger_axis.x)
                            paw_y_list.append(finger_axis.y)
                        if landmark_list:
                            # 比例缩放到像素
                            ratio_x_to_pixel = lambda x: math.ceil(x * resize_w)
                            ratio_y_to_pixel = lambda y: math.ceil(y * resize_h)

                            # 设计手掌左上角、右下角坐标
                            paw_left_top_x, paw_right_bottom_x = map(ratio_x_to_pixel,
                                                                     [min(paw_x_list), max(paw_x_list)])
                            paw_left_top_y, paw_right_bottom_y = map(ratio_y_to_pixel,
                                                                     [min(paw_y_list), max(paw_y_list)])

                            # 给手掌画框框
                            cv2.rectangle(self.image, (paw_left_top_x - 30, paw_left_top_y - 30),
                                          (paw_right_bottom_x + 30, paw_right_bottom_y + 30), (0, 255, 0), 2)

                            # 获取中指指尖坐标
                            middle_finger_tip = landmark_list[12]
                            middle_finger_tip_x = ratio_x_to_pixel(middle_finger_tip[1])
                            middle_finger_tip_y = ratio_y_to_pixel(middle_finger_tip[2])

                            # 获取食指指尖坐标
                            index_finger_tip = landmark_list[8]
                            index_finger_tip_x = ratio_x_to_pixel(index_finger_tip[1])
                            index_finger_tip_y = ratio_y_to_pixel(index_finger_tip[2])
                            # 中间点
                            between_finger_tip = (middle_finger_tip_x + index_finger_tip_x) // 2, (
                                        middle_finger_tip_y + index_finger_tip_y) // 2
                            # print(middle_finger_tip_x)
                            thumb_finger_point = (middle_finger_tip_x, middle_finger_tip_y)
                            index_finger_point = (index_finger_tip_x, index_finger_tip_y)
                            # 画指尖2点
                            circle_func = lambda point: cv2.circle(self.image, point, 10, (255, 0, 255), -1)
                            self.image = circle_func(thumb_finger_point)
                            self.image = circle_func(index_finger_point)
                            self.image = circle_func(between_finger_tip)
                            # 画2点连线
                            self.image = cv2.line(self.image, thumb_finger_point, index_finger_point, (255, 0, 255), 5)
                            # 勾股定理计算长度
                            line_len = math.hypot((index_finger_tip_x - middle_finger_tip_x),
                                                  (index_finger_tip_y - middle_finger_tip_y))
                            # 将指尖距离映射到文字
                            rect_percent_text = math.ceil(line_len)

                            # 激活模式,需要让矩形跟随移动
                            if squareManager.drag_active:
                                # 更新方块
                                squareManager.updateSquare(between_finger_tip[0], between_finger_tip[1])
                                if (line_len > 100):
                                    # 取消激活
                                    squareManager.drag_active = False
                                    squareManager.active_index = -1

                            elif (line_len < 100) and (squareManager.checkOverlay(between_finger_tip[0],
                                                                                  between_finger_tip[1]) != -1) and (
                                    squareManager.drag_active == False):
                                # 激活
                                squareManager.drag_active = True
                                # 计算距离
                                squareManager.setLen(between_finger_tip[0], between_finger_tip[1])

                # 显示方块,传入本实例,主要为了半透明的处理
                squareManager.display(self)

                # 显示距离
                cv2.putText(self.image, "Distance:" + str(rect_percent_text), (10, 120), cv2.FONT_HERSHEY_PLAIN, 3,
                            (255, 0, 0), 3)

                # 显示当前激活
                cv2.putText(self.image, "Active:" + (
                    "None" if squareManager.active_index == -1 else str(squareManager.active_index)), (10, 170),
                            cv2.FONT_HERSHEY_PLAIN, 3, (255, 0, 0), 3)

                # 显示刷新率FPS
                cTime = time.time()
                fps_text = 1 / (cTime - fpsTime)
                fpsTime = cTime
                cv2.putText(self.image, "FPS: " + str(int(fps_text)), (10, 70),
                            cv2.FONT_HERSHEY_PLAIN, 3, (255, 0, 0), 3)
                # 显示画面
                cv2.imshow('virtual drag and drop', self.image)

                if cv2.waitKey(5) & 0xFF == 27:
                    break
            cap.release()

control = HandControlVolume()
control.recognize()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1188613.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用Drupal管理小型项目?试试Docker快速部署Drupal结合内网穿透实现远程访问

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525;个人专栏:《Linux深造日志》《C干货基地》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 文章目录 前言1. Docker安装Drupal2. 本地局域网访问3 . Linux 安装cpolar4. 配置Drupal公网访问地址5. 公网远程访问Drupal…

四川思维跳动商务信息咨询有限公司可信吗?

在今天的数字化时代&#xff0c;抖音带货已成为一种全新的商业模式。许多公司都在通过这种形式进行产品推广和销售&#xff0c;其中&#xff0c;四川思维跳动商务信息咨询有限公司以其专业的服务和良好的信誉&#xff0c;在抖音带货领域赢得了广泛赞誉。 四川思维跳动商务信息…

抖店怎么做才会快速起店?跟着这个思路来,一周搞定!

大家好&#xff0c;我是电商糖果 有不少朋友&#xff0c;自己开了一家抖店。 因为不懂运营&#xff0c;店铺一直没有流量&#xff0c;也不出单。 糖果做抖店三年多了&#xff0c;不敢自吹有多么优秀&#xff0c;但是做店还是有一套自己的方法的。 按照糖果这个思路做店&…

echarts 图表 地图实例

效果&#xff1a; 代码实现&#xff1a; draw(data) {var option {tooltip: {trigger: item,icon: query,// triggerOn: click,formatter: function (e, t, n) {let string ;string <div style"padding:10px"><span style"padding-right:10px"…

Microsoft SDKs 有文件重定义导致编译失败的处理

一个32位的mfc项目&#xff0c;之前采用vs2019编译&#xff0c;现在换了电脑(系统是win10)&#xff0c;采用vs2022编译时&#xff0c;提示如下错误&#xff1a; 1>------ 已启动生成: 项目: aAnsys, 配置: Debug Win32 ------ 1>cl : 命令行 warning D9035: “Gm”选项…

【ubuntu】ubuntu系统查看服务命令

查看正在运行的服务 sudo service --status-all [] 代表服务是在启动运行的状态 [-] 代表服务是在关闭停止的状态

使用Go语言抓取酒店价格数据的技术实现

目录 一、引言 二、准备工作 三、抓取数据 四、数据处理与存储 五、数据分析与可视化 六、结论与展望 一、引言 随着互联网的快速发展&#xff0c;酒店预订已经成为人们出行的重要环节。在选择酒店时&#xff0c;价格是消费者考虑的重要因素之一。因此&#xff0c;抓取酒…

opencv读取图片的方式影响图像绘制的颜色

圆圈的颜色设置不变&#xff0c;仅仅更改imread读取图片的方式 #frame cv2.imread(img_path,2)##flag2,单通道&#xff0c;原深度 **frame cv2.imread(img_path)##flag2,单通道&#xff0c;原深度** #cv2.circle(frame, (int(lmx), int(lmy)), 8, (0, 0, 125), 3) ### open…

优思学院|推行精益六西格玛困难重重?7大原因分析助你避坑

六西格玛&#xff0c;是一种让企业在绩效管理的舞台上跳得更高更远的方法。它不仅仅是一套原则和技术&#xff0c;更是一种对完美的执着追求。 在这个舞台上&#xff0c;企业的流程管理得以严格、集中&#xff0c;质量得以高效提升。优思学院总结出六西格玛的核心是&#xff1…

互联网金融风控常见知识点

1.怎么做互联网金融风控 首先风险不是都是坏的&#xff0c;风险是有价值的。也就是风险的VaR值(Value at Risk) 对于互联网信贷风控&#xff0c;是要把风险和收益做到更合理的平衡&#xff0c;在控制风险水平的情况下使得收益更高。 所以&#xff0c;做风控的不是一味地追求耕…

VS Code + VUE 代码自动格式化配置

插件列表 ESLintVetur setting.json { "[vue]": { "editor.defaultFormatter": "octref.vetur" }, "[javascript]": { "editor.defaultFormatter": "vscode.typescript-language-features" }, …

抖音双11进入决赛圈,爆款王炸单品竟是.....

今年&#xff0c;抖音将双11战线拉长&#xff0c;给足品牌和消费者时间备战&#xff0c;第一轮抢跑期战绩亮眼&#xff0c;多项双11销售增长记录被刷新&#xff0c;引爆全域流量。最后几天&#xff0c;抖音商城全面进入终局厮杀阶段&#xff0c;爆发期下半程对比抢跑期增速放缓…

Scala爬虫实战:采集网易云音乐热门歌单数据

导言 网易云音乐是一个备受欢迎的音乐平台&#xff0c;汇集了丰富的音乐资源和热门歌单。这些歌单涵盖了各种音乐风格和主题&#xff0c;为音乐爱好者提供了一个探索和分享音乐的平台。然而&#xff0c;有时我们可能需要从网易云音乐上获取歌单数据&#xff0c;以进行音乐推荐…

后端面试问题(学习版)

JAVA相关 JAVA语言概述 1. 一个".java"源文件中是否可以包含多个类&#xff1f;有什么限制&#xff1f; 可以。 一个源文件可以声明多个类&#xff0c;但是最多只能有一个类使用public进行声明 且要求声明public的类的类名与源文件相同。 2. Java的优势&#xff…

Python中的del用法

大家早好、午好、晚好吖 ❤ ~欢迎光临本文章 如果有什么疑惑/资料需要的可以点击文章末尾名片领取源码 python中的del用法比较特殊&#xff0c;新手学习往往产生误解&#xff0c;弄清del的用法&#xff0c;可以帮助深入理解python的内存方面的问题。 python的del不同于C的fre…

Jmeter 基本使用以及性能测试基本流程使用总结

使用场景 需要对一部分接口做性能测试&#xff0c;并检验修改后的效果下载安装 搜索 Apache JMeter - Download Apache JMeter 或直接到官网 https://jmeter.apache.org/download_jmeter.cgi?cm_mc_uid15063477198714828218851&cm_mc_sid_502000001483277541下载 选择 zi…

TSINGSEE青犀车辆违停AI算法在园区道路管控场景中的应用方案

一、背景与需求 园区作为企业办公、生产制造的重要场所&#xff0c;主要道路车辆违停等违规行为会对园区的安全造成隐患&#xff0c;并且在上下班高峰期内&#xff0c;由于发现不及时&#xff0c;车辆违停行为会造成出入口拥堵现象&#xff0c;这也成为园区管理的棘手问题。 …

23届有必要从cobol转Java嘛?

23届有必要从cobol转Java嘛&#xff1f; 题主说我是一名23届科班毕业生&#xff0c;目前在一家做对日开发的公司&#xff0c;用的是上古语言cobol&#xff0c;目前工作挺稳定的&#xff0c;也比较轻松&#xff0c;之前自学过Java&#xff0c;现在打算年后换工作&#xff0c;一来…

OFDM深入学习及MATLAB仿真

文章目录 前言一、OFDM 基本原理及概念1、OFDM 简介2、子载波3、符号4、子载波间隔与符号长度之间的关系 二、涉及的技术1、保护间隔2、交织3、信道编码4、扩频5、导频6、RF&#xff08;射频&#xff09;调制7、信道估计 三、变量间的关系四、IEEE 802.11a WLAN PHY 层标准五、…

电脑怎么做图片二维码?在线制作二维码的方法

图片制作二维码是现在经常被使用的一个功能&#xff0c;比如产品照片、自拍、海报等等不同格式或者类型的文件都可以生成二维码。那么想要快速完成二维码制作&#xff0c;使用图片二维码生成器就可以快速完成制作&#xff0c;本文将给大家分享一下在电脑上制作图片二维码的操作…