有两种数据结构,散列表和链表,经常会被放在一起使用。
例如,如何用链表来实现LRU缓存淘汰算法,但是链表实现的LRU缓存淘汰算法的时间复杂度是O(n),当时我也提到了,通过散列表可以将这个时间复杂度降低到O(1)。
Redis的有序集合是使用跳表来实现的,跳表可以看作一种改进版的链表。当时我们也提到,Redis有序集合不仅使用了跳表,还用到了散列表。
除此之外,如果你熟悉Java编程语言,你会发现LinkedHashMap这样一个常用的容器,也用到了散列表和链表两种数据结构。
今天,我们就来看看,在这几个问题中,散列表和链表都是如何组合起来使用的,以及为什么散列表和链表会经常放到一块使用。
LRU缓存淘汰算法
借助散列表,我们可以把LRU缓存淘汰算法的时间复杂度降低为O(1)。现在,我们就来看看它是如何做到的。
首先,我们来回顾一下当时我们是如何通过链表实现LRU缓存淘汰算法的。
我们需要维护一个按照访问时间从大到小有序排列的链表结构。因为缓存大小有限,当缓存空间不够,需要淘汰一个数据的时候,我们就直接将链表头部的结点删除。
当要缓存某个数据的时候,先在链表中查找这个数据。如果没有找到,则直接将数据放到链表的尾部;如果找到了,我们就把它移动到链表的尾部。因为查找数据需要遍历链表,所以单纯用链表实现的LRU缓存淘汰算法的时间复杂很高,是O(n)。
实际上,我总结一下,一个缓存(cache)系统主要包含下面这几个操作:
-
往缓存中添加一个数据;
-
从缓存中删除一个数据;
-
在缓存中查找一个数据。
这三个操作都要涉及“查找”操作,如果单纯地采用链表的话,时间复杂度只能是O(n)。如果我们将散列表和链表两种数据结构组合使用,可以将这三个操作的时间复杂度都降低到O(1)。具体的结构就是下面这个样子:
我们使用双向链表存储数据,链表中的每个结点处理存储数据(data)、前驱指针(prev)、后继指针(next)之外,还新增了一个特殊的字段hnext。这个hnext有什么作用呢?
因为我们的散列表是通过链表法解决散列冲突的,所以每个结点会在两条链中。一个链是刚刚我们提到的双向链表,另一个链是散列表中的拉链。前驱和后继指针是为了将结点串在双向链表中,hnext指针是为了将结点串在散列表的拉链中。
了解了这个散列表和双向链表的组合存储结构之后,我们再来看,前面讲到的缓存的三个操作,是如何做到时间复杂度是O(1)的?
首先,我们来看如何查找一个数据。我们前面讲过,散列表中查找数据的时间复杂度接近O(1),所以通过散列表,我们可以很快地在缓存中找到一个数据。当找到数据之后,我们还需要将它移动到双向链表的尾部。
其次,我们来看如何删除一个数据。我们需要找到数据所在的结点,然后将结点删除。借助散列表,我们可以在O(1)时间复杂度里找到要删除的结点。因为我们的链表是双向链表,双向链表可以通过前驱指针O(1)时间复杂度获取前驱结点,所以在双向链表中,删除结点只需要O(1)的时间复杂度。
最后,我们来看如何添加一个数据。添加数据到缓存稍微有点麻烦,我们需要先看这个数据是否已经在缓存中。如果已经在其中,需要将其移动到双向链表的尾部;如果不在其中,还要看缓存有没有满。如果满了,则将双向链表头部的结点删除,然后再将数据放到链表的尾部;如果没有满,就直接将数据放到链表的尾部。
这整个过程涉及的查找操作都可以通过散列表来完成。其他的操作,比如删除头结点、链表尾部插入数据等,都可以在O(1)的时间复杂度内完成。所以,这三个操作的时间复杂度都是O(1)。至此,我们就通过散列表和双向链表的组合使用,实现了一个高效的、支持LRU缓存淘汰算法的缓存系统原型。
Redis有序集合
在跳表那一节,讲到有序集合的操作时,我稍微做了些简化。实际上,在有序集合中,每个