【STM32】TIM2的PWM:脉冲宽度调制

news2025/1/11 14:56:30

PWM是一种周期固定,脉宽可调整的输出波形。

0.通用寄存器输出

1.捕获/比较通道1的主电路--中间部分

2.捕获/比较通道的输出部分--输出

3.通用定时器输出PWM原理

PWM波周期或者频率由ARR(就是要进递增/递减的值)决定,PWM波占空比由CRRx决定。

1.定时器的PWM输出功能介绍

1)通过定时器的中断,在isr中将一个GPIO引脚电平反转,可以实现PWM输出功能【麻烦,设置多】

2)定时器附带专用的PWM输出功能,定时器那边和某一个引脚绑定,然后定时器设置好了之后内部开始+1或者-1,然后时间到了之后不是产生中断,而是直接将绑定的引脚电平反转产生PWM输出。【CPU不参与,效率高】

1.占空比:脉宽(高电平)占总周期的比例

1)可以用来调制脉冲宽度--》脉冲宽度调制

2)占空比的调节,是通过比较值与计数器的大小差距,当两者的关系改变的时,会进行电平反转。

2.PWM频率

频率越大,切换速度越快,时间段越短

3.PWM占空比和周期

4.PWM1  VS  PWM2

2.专用PWM输出的实现原理

1.比较功能

1)所谓的比较原理,设计3个计数有关的寄存器:CMP(比较),CNT(计数器),ARR(存放计数原始值)

定时器有4个输出通道,每一个通道都有一个捕获/比较寄存器,将寄存器值(ARR)和计数器值(CNT)进行比较,通过比较结果输出高低电平,实现PWM信号输出。

高低电平的1和0可以进行设置

2)在输入捕获/输出比较功能中--都要使用同一个外部引脚

3)每一个定时器只有一个计数器,但是每一个通道都有自己的捕获/比较寄存器,因此对于一个定时器来说,4路输出的PWM频率(周期)都是相同的,而不同通道的占空比可以不同。

2.相关寄存器

1.TIMx_CNT(计数器),TIMx_ARR(自动重装载寄存器),TIMx_CCRn(捕获/比较寄存器)

TIMx_CCRn:是来选择哪一条通道

2.CCMR1,CCMR2,CCER:捕获/比较模式寄存器

CCMR1:处理了通道1和通道2

CCMR2:处理了通道3和通道4

CCER:配置要什么电平才是有效的

3.CR1,CR2,PSC

CR1,CR2:使能,开关

PSC:分频功能

3.标准库中相关的API

1.TIM_TimeBaseInit

void TIM_TimeBaseInit(TIM_TypeDef* TIMx, TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct)
{
  uint16_t tmpcr1 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx)); 
  assert_param(IS_TIM_COUNTER_MODE(TIM_TimeBaseInitStruct->TIM_CounterMode));
  assert_param(IS_TIM_CKD_DIV(TIM_TimeBaseInitStruct->TIM_ClockDivision));

  tmpcr1 = TIMx->CR1;  

  if((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM2) || (TIMx == TIM3)||
     (TIMx == TIM4) || (TIMx == TIM5)) 
  {
    /* Select the Counter Mode */
    tmpcr1 &= (uint16_t)(~((uint16_t)(TIM_CR1_DIR | TIM_CR1_CMS)));
    tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_CounterMode;
  }
 
  if((TIMx != TIM6) && (TIMx != TIM7))
  {
    /* Set the clock division */
    tmpcr1 &= (uint16_t)(~((uint16_t)TIM_CR1_CKD));
    tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_ClockDivision;
  }

  TIMx->CR1 = tmpcr1;

  /* Set the Autoreload value */
  //要计数的值
  TIMx->ARR = TIM_TimeBaseInitStruct->TIM_Period ;
 
  /* Set the Prescaler value */
  //预分频参数
  TIMx->PSC = TIM_TimeBaseInitStruct->TIM_Prescaler;
    
  if ((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM15)|| (TIMx == TIM16) || (TIMx == TIM17))  
  {
    /* Set the Repetition Counter value */
    TIMx->RCR = TIM_TimeBaseInitStruct->TIM_RepetitionCounter;
  }

  /* Generate an update event to reload the Prescaler and the Repetition counter
     values immediately */
     //预分频器参数的改变
  TIMx->EGR = TIM_PSCReloadMode_Immediate;           
}

2.TIM_OC1Init(TIM_OCnInit)

TIM_OCn--->指的使用了哪一个通道

void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
{
  uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
   
  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
  assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   
 /* Disable the Channel 1: Reset the CC1E Bit */
  TIMx->CCER &= (uint16_t)(~(uint16_t)TIM_CCER_CC1E);
  /* Get the TIMx CCER register value */
  tmpccer = TIMx->CCER;
  /* Get the TIMx CR2 register value */
  tmpcr2 =  TIMx->CR2;
  
  /* Get the TIMx CCMR1 register value */
  tmpccmrx = TIMx->CCMR1;
    
  /* Reset the Output Compare Mode Bits */
  tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR1_OC1M));
  tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR1_CC1S));

  /* Select the Output Compare Mode */
  tmpccmrx |= TIM_OCInitStruct->TIM_OCMode;
  
  /* Reset the Output Polarity level */
  tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC1P));
  /* Set the Output Compare Polarity */
  tmpccer |= TIM_OCInitStruct->TIM_OCPolarity;
  
  /* Set the Output State */
  tmpccer |= TIM_OCInitStruct->TIM_OutputState;
    
  if((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM15)||
     (TIMx == TIM16)|| (TIMx == TIM17))
  {
    assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
    assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
    assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
    assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
    
    /* Reset the Output N Polarity level */
    tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC1NP));
    /* Set the Output N Polarity */
    tmpccer |= TIM_OCInitStruct->TIM_OCNPolarity;
    
    /* Reset the Output N State */
    tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC1NE));    
    /* Set the Output N State */
    tmpccer |= TIM_OCInitStruct->TIM_OutputNState;
    
    /* Reset the Output Compare and Output Compare N IDLE State */
    tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS1));
    tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS1N));
    
    /* Set the Output Idle state */
    tmpcr2 |= TIM_OCInitStruct->TIM_OCIdleState;
    /* Set the Output N Idle state */
    tmpcr2 |= TIM_OCInitStruct->TIM_OCNIdleState;
  }
  /* Write to TIMx CR2 */
  TIMx->CR2 = tmpcr2;
  
  /* Write to TIMx CCMR1 */
  TIMx->CCMR1 = tmpccmrx;

  /* Set the Capture Compare Register value */
  TIMx->CCR1 = TIM_OCInitStruct->TIM_Pulse; 
 
  /* Write to TIMx CCER */
  TIMx->CCER = tmpccer;
}

3.TIM_OCInitTypeDef:OC的结构体

typedef struct
{
//选择TIM的模式
  uint16_t TIM_OCMode;        /*!< Specifies the TIM mode.
                                   This parameter can be a value of @ref TIM_Output_Compare_and_PWM_modes */
//选择TIM的输出状态
  uint16_t TIM_OutputState;   /*!< Specifies the TIM Output Compare state.
                                   This parameter can be a value of @ref TIM_Output_Compare_state */

  uint16_t TIM_OutputNState;  /*!< Specifies the TIM complementary Output Compare state.
                                   This parameter can be a value of @ref TIM_Output_Compare_N_state
                                   @note This parameter is valid only for TIM1 and TIM8. */
//要进行比较的值
  uint16_t TIM_Pulse;         /*!< Specifies the pulse value to be loaded into the Capture Compare Register. 
                                   This parameter can be a number between 0x0000 and 0xFFFF */
//输出的极性
  uint16_t TIM_OCPolarity;    /*!< Specifies the output polarity.
                                   This parameter can be a value of @ref TIM_Output_Compare_Polarity */

  uint16_t TIM_OCNPolarity;   /*!< Specifies the complementary output polarity.
                                   This parameter can be a value of @ref TIM_Output_Compare_N_Polarity
                                   @note This parameter is valid only for TIM1 and TIM8. */

  uint16_t TIM_OCIdleState;   /*!< Specifies the TIM Output Compare pin state during Idle state.
                                   This parameter can be a value of @ref TIM_Output_Compare_Idle_State
                                   @note This parameter is valid only for TIM1 and TIM8. */

  uint16_t TIM_OCNIdleState;  /*!< Specifies the TIM Output Compare pin state during Idle state.
                                   This parameter can be a value of @ref TIM_Output_Compare_N_Idle_State
                                   @note This parameter is valid only for TIM1 and TIM8. */
} TIM_OCInitTypeDef;

1.TIM_OCMode:选择TIM的模式

2.TIM_OutputState:选择输出类型

选择输出有效电平类型

3.TIM_Pulse:输入要进行比较的值

4.TIM_OCPolarity:设置输出极性

4.TIM_OCnPreloadConfig

void TIM_ForcedOC1Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
{
  uint16_t tmpccmr1 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
  tmpccmr1 = TIMx->CCMR1;
  /* Reset the OC1M Bits */
  tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1M);
  /* Configure The Forced output Mode */
  tmpccmr1 |= TIM_ForcedAction;
  /* Write to TIMx CCMR1 register */
  TIMx->CCMR1 = tmpccmr1;
}

5.TIM_OC1PreloadConfig

void TIM_OC1PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
{
  uint16_t tmpccmr1 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
  tmpccmr1 = TIMx->CCMR1;
  /* Reset the OC1PE Bit */
  tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1PE);
  /* Enable or Disable the Output Compare Preload feature */
  tmpccmr1 |= TIM_OCPreload;
  /* Write to TIMx CCMR1 register */
  TIMx->CCMR1 = tmpccmr1;
}

6.TIM_ClearOC1Ref

void TIM_ClearOC1Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
{
  uint16_t tmpccmr1 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));

  tmpccmr1 = TIMx->CCMR1;

  /* Reset the OC1CE Bit */
  tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1CE);
  /* Enable or Disable the Output Compare Clear Bit */
  tmpccmr1 |= TIM_OCClear;
  /* Write to TIMx CCMR1 register */
  TIMx->CCMR1 = tmpccmr1;
}

7.TIM_OC1PolarityConfig

void TIM_OC1PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
{
  uint16_t tmpccer = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
  tmpccer = TIMx->CCER;
  /* Set or Reset the CC1P Bit */
  tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC1P);
  tmpccer |= TIM_OCPolarity;
  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

4.GPIO引脚和PWM的对应关系

STM32F103中文教程及参考手册.pdf · 林何/STM32F103C8 - 码云 - 开源中国 (gitee.com)

在AFIO中进行查找

没有重映像:表示默认接入的io口

完全重映像:如果使用这个则要调用函数进行声明【GPIO_PinRemapConfig】

5.TIM2的专用PWM输出编程实践

1.官方示例代码

我们使用的是TIM3,因为我们复用了GPIOA,所以要去AFIO中去查找TIM3对应的关系

#include "pwm.h"
#include "led.h"

//PWM输出初始化
//arr:自动重装值
//psc:时钟预分频数
void TIM1_PWM_Init(u16 arr,u16 psc)
{  
	GPIO_InitTypeDef GPIO_InitStructure;
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
	TIM_OCInitTypeDef  TIM_OCInitStructure;
	
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);			// 
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA , ENABLE);  		//使能GPIO外设时钟使能
	                                                                     	
	//设置该引脚为复用输出功能,输出TIM1 CH1的PWM脉冲波形
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; 						//TIM_CH1
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;  				//复用推挽输出
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);

	TIM_TimeBaseStructure.TIM_Period = arr; 						//设置在下一个更新事件装入活动的自动重装载寄存器周期的值	 80K
	TIM_TimeBaseStructure.TIM_Prescaler =psc; 						//设置用来作为TIMx时钟频率除数的预分频值  不分频
	TIM_TimeBaseStructure.TIM_ClockDivision = 0; 					//设置时钟分割:TDTS = Tck_tim
	TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;		//TIM向上计数模式
	TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure); 				//根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位

	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; 				//选择定时器模式:TIM脉冲宽度调制模式2
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;	//比较输出使能
	TIM_OCInitStructure.TIM_Pulse = 0;								//设置待装入捕获比较寄存器的脉冲值
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; 		//输出极性:TIM输出比较极性高
	TIM_OC1Init(TIM1, &TIM_OCInitStructure);  						//根据TIM_OCInitStruct中指定的参数初始化外设TIMx

	TIM_CtrlPWMOutputs(TIM1,ENABLE);								//MOE 主输出使能	

	TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);  				//CH1预装载使能	 
	
	TIM_ARRPreloadConfig(TIM1, ENABLE); 							//使能TIMx在ARR上的预装载寄存器
	
	TIM_Cmd(TIM1, ENABLE);  										//使能TIM1
}

2.代码移植

我们先去查看我们进行操作的TIM2对应应该复用哪一个AFIO引脚

可知TIM2的通道1对于的没有重映像是PA0

#include "stm32f10x.h"                  // Device header
/**
	使用TIM2的Channel1,无重映射时对应PA0引脚,在原理图上对应P1.0
*/

void pwm_init(void);


int main(){
	
	pwm_init(); //频率是2Kh
	return 0;
}
 
void pwm_init(void)
{
	GPIO_InitTypeDef GPIO_InitStructure;   //声明一个结构体变量,用来初始化GPIO

	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;//声明一个结构体变量,用来初始化定时器

	TIM_OCInitTypeDef TIM_OCInitStructure;//根据TIM_OCInitStruct中指定的参数初始化外设TIMx

	/* 开启时钟 */
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO, ENABLE);
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);

	/*  配置GPIO的模式和IO口 */
	GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0;
	GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
	GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP;//复用推挽输出
	GPIO_Init(GPIOA,&GPIO_InitStructure);		// GPA15,



	// time = CNT/fHz = 9000/72000000s
	// Fpwm = 1/T = 72000000/9000Hz = 8000Hz = 8KHz
	//TIM3定时器初始化
	TIM_TimeBaseInitStructure.TIM_Period = 9000 - 1;	   //不分频,PWM 频率=72000/900=8Khz//设置自动重装载寄存器周期的值
	TIM_TimeBaseInitStructure.TIM_Prescaler = 0;//设置用来作为TIMx时钟频率预分频值,100Khz计数频率
	TIM_TimeBaseInitStructure.TIM_ClockDivision = 0;//设置时钟分割:TDTS = Tck_tim
	TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;	//TIM向上计数模式
	TIM_TimeBaseInit(TIM2, & TIM_TimeBaseInitStructure);

	// 将TIM2的输出引脚进行fll remap到PA15,也就是P3.7
	//GPIO_PinRemapConfig(GPIO_FullRemap_TIM2, ENABLE);


	//PWM初始化	  //根据TIM_OCInitStruct中指定的参数初始化外设TIMx
	TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_PWM1;
	TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable;//PWM输出使能
	//TIM_OCInitStructure.TIM_Pulse = 4500 - 1;
	//TIM_Pulse:设置占空比【占了1/3==3000/9000】
	TIM_OCInitStructure.TIM_Pulse = 3000 - 1;
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;

	TIM_OC1Init(TIM2,&TIM_OCInitStructure);

	TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Enable);
	
	TIM_Cmd(TIM2,ENABLE);//使能或者失能TIMx外设
}







本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1184346.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

卫浴服务信息展示预约小程序的作用如何

卫浴产品多种多样&#xff0c;尤其对经销商来说&#xff0c;各种品牌规格的产品都有&#xff0c;品牌商也一样&#xff0c;该产品在市场中并不缺客户&#xff0c;但想要获取却绝非易事&#xff0c;那么卫浴商家面临哪些痛点&#xff0c;又该如何解决呢&#xff1f; 1、品牌传播…

Ionic header content footer toolbar UI实例

1 ionic的button图标 <ion-header [translucent]"true"><ion-toolbar><ion-buttons slot"start"><ion-back-button default-href"/tabs/tab1" text"back" icon"caret-back"></ion-back-button&…

Python实现JS逆向解密采集网站数据

嗨喽~大家好呀&#xff0c;这里是魔王呐 ❤ ~! python更多源码/资料/解答/教程等 点击此处跳转文末名片免费获取 环境使用: Python 3.8 Pycharm nodejs 模块使用: import requests --> pip install requests import execjs --> pip install pyexecjs import json 实…

告诉大家4个常见的免费备份方法!

​什么是不花费一分钱的数据备份方式&#xff1f;对于那些有特殊兴趣爱好的用户来说&#xff0c;他们的常用存储设备里往往会充满各种各样丰富的数据。举个例子&#xff1a;对于那些热衷于探索四方的旅行者&#xff0c;随着他们足迹的延展&#xff0c;需要对数量众多的美丽景色…

每日汇评:黄金正在期待鲍威尔的讲话以获取新的方向动力

周三早盘&#xff0c;金价盘整了连续两天的跌势&#xff0c;等待鲍威尔发言&#xff1b; 美元在不同的美联储评论和风险偏好减弱的情况下寻求方向&#xff1b; 黄金价格确认了上升三角形的突破&#xff0c;但美债收益率较低可能会限制跌幅&#xff1b; 周二早些时候&#xf…

零基础Linux_26(多线程)线程池代码+单例模式+线程安全

目录 1. 线程池 1.1 前期代码 thread.hpp 1.2 加上锁的代码 lockGuard.hpp 1.3 加上任务的代码 1.4 加上日志的代码 log.hpp Task.hpp 2. 单例模式的线程安全 2.1 线程池的懒汉模式 threadPool.hpp testMain.cc 3. STL和智能指针的线程安全 4. 笔试题 答案及解…

KubeSphere v3.4.0 部署K8S Docker + Prometheus + grafana

KubeSphere v3.4.0 部署K8S 1、整体思路2、修改linux主机名3、 离线安装3.1 问题列表3.2 执行命令成功列表 1、整体思路 将KubeSphere v3.4.0 安装包传输到其中一台机器修改Linux主机名&#xff08;选取3台&#xff0c;修改为master01、master02、master03&#xff09;安装官方…

箭头函数 跟匿名函数this的指向问题

var id 10; function foo() {// 创建时 this->windowthis.id 20; // 等价于 window.id 20let c () > {console.log("id1:", this.id); // 创建时父级 创建时 this->window};let d function () {console.log("id2:", this.id); // 执行时本…

全面解析:如何快速搭建AI数字人系统源码,都有哪些平台?

随着数字人直播系统的兴起&#xff0c;越来越多的人对数字人直播系统源码搭建感兴趣。数字人直播系统源码在一些市场上是可以找到的&#xff0c;但是鱼目混杂、五花八门想要找一个合适自己的就需要一定技巧&#xff0c;要选择一个技术专业的AI数字人直播系统源码服务商。下面是…

【IO多路转接】pollepoll

文章目录 1 :peach:poll:peach:1.1 :apple:poll函数接口:apple:1.2 :apple:poll接口的使用:apple:1.3 :apple:poll的优缺点:apple: 2 :peach:epoll:peach:2.1 :apple:epoll函数接口:apple:2.1.1 :lemon:epoll_create:lemon:2.1.2 :lemon:epoll_ctl:lemon:2.1.3 :lemon:epoll_wa…

OGG将Oracle全量同步到kafka

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 哈喽&#xff01;大家好&#xff0c;我是【IT邦德】&#xff0c;江湖人称jeames007&#xff0c;10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】&#xff01;&#x1f61c;&am…

C语言之pthread_once实例总结(八十三)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

ClickHouse介绍和使用

ClickHouse介绍和使用 1. 简介2. ClickHouse特点3. 数据类型3.1. 整型3.2. 浮点型3.3. Decimal型3.4. 布尔型3.5. 字符串3.6. 枚举类型3.7. 时间类型 4. 表引擎4.1. TinyLog4.2. Memory4.3. MergeTree4.3.1. partition by分区&#xff08;可选&#xff09;4.3.2. primary key 主…

微信小程序将后端返回的图片文件流解析显示到页面

说明 由于请求接口后端返回的图片格式不是一个完整的url,也不是其他直接能显示的图片格式&#xff0c;是一张图片 后端根据模板与二维码生成图片,返回二进制数据 返回为文件流的格式,用wx.request请求的时候&#xff0c;就自动解码成为了下面这样的数据数据格式,这样的数据没…

Spring的缓存机制-循环依赖

群公告 Java每日大厂面试题&#xff1a; 1、Spring 是如何解决循环依赖&#xff1f; 答案&#xff1a;三级缓存&#xff0c;简单来说&#xff0c;A创建过程中需要B&#xff0c;于是A将自己放到三级缓存里面&#xff0c;去实例化B&#xff0c;B实例化的时候发现需要…

智能AI系统ChatGPT系统源码+支持GPT4.0+支持ai绘画(Midjourney)/支持OpenAI GPT全模型+国内AI全模型

一、AI创作系统 SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统&#xff0c;支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如…

交流负载发电机测试

交流负载发电机测试是一种常用的测试方法&#xff0c;用于评估发电机在负载条件下的性能和稳定性。测试过程中需要使用负载设备模拟实际负载&#xff0c;并通过测量电压、电流、功率等参数来评估发电机的输出能力和稳定性。 在进行测试之前&#xff0c;首先需要准备好测试设备和…

30张图详解IP地址网络知识

你们好&#xff0c;我的网工朋友。 IP地址是所有网络初级课程里最先涉及到的技术点&#xff0c;对于IP地址的合理规划是网络设计的重要环节&#xff0c;必须拿捏。 IP地址规划的好坏&#xff0c;影响到网络路由协议算法的效率&#xff0c;影响到网络的性能&#xff0c;影响到网…

短剧出海火爆,Flat Ads独家流量助泛娱乐赛道App迅速获客增长

10月26日&#xff0c;由扬帆出海主办的GICC2023 | 第四届全球互联网产业CEO大会正式圆满落幕&#xff0c;Flat Ads等出海企业应邀参加。 据悉&#xff0c;本届GICC深圳站邀请200CXO行业领袖、300各路优质厂商、1200全球互联网产业代表共聚一堂&#xff0c;聚焦短剧、游戏、泛娱…

最前端|如何使用Plausible实现页面埋点?

目录 一、业务背景 二、业务场景描述 三、解决方案 //如何集成 Plausible &#xff1f; //如何监控特定功能使用情况&#xff1f; 什么是 MyEventName? //如何向自定义事件传递参数&#xff1f; 一、业务背景 随着公司自研产品的不断发展&#xff0c;对前端页面的监控和…