open clip论文阅读摘要

news2024/11/22 18:24:11

看下open clip论文
Learning Transferable Visual Models From Natural Language Supervision
These results suggest that the aggregate supervision accessible to modern pre-training methods within web-scale collections of text surpasses that of high-quality crowd-labeled NLP datasets.

CNNs trained to predict words in image captions learn useful image representations

learn image representations from text

我好奇,在OCR上是怎么测试的?
CLIP训练样本要怎么准备,400 million (image, text) pairs,这个量级的样本集是怎么准备出来的

论文说CLIP这种预训练,zero-shot可以媲美基于监督学习构建的模型,我需要打个问号,在特定领域的业务数据上好像不太够啊?

Learning from natural language has several potential strengths over other training methods. It’s much easier to scale natural language supervision compared to standard crowd-sourced labeling for image classification since it does not require annotations to be in a classic “machine learning compatible format” such as the canonical 1-of-N majority vote “gold label”

MS-COCO and Visual Genome are high quality crowd-labeled datasets, they are small by modern standards with approximately 100,000 training photos each

YFCC100M, at 100 million photos, is a possible alternative, but the metadata for each image is sparse and of varying quality
Many images use automatically generated filenames like 20160716 113957.JPG as “titles” or contain “descriptions” of camera exposure settings. After filtering to keep only images with natural language titles and/or descriptions in English, the dataset shrunk by a factor of 6 to only 15 million photos. This is
approximately the same size as ImageNet

A major motivation for natural language supervision is the large quantities of data of this form available publicly on the internet.

we constructed a new dataset of 400 million (image, text) pairs collected form a variety of publicly available sources on the Internet

We approximately class balance the results by including up to 20,000 (image, text) pairs per query. The resulting dataset has a similar total word count as the WebText dataset used to train GPT-2. We refer to this dataset as WIT for WebImageText
注重样本的类别平衡

we found training efficiency was key to successfully scaling natural language supervision and we selected our final pre-training method based on this metric
是的,在这样规模的数据集上训练,需要的时间是令人畏惧的,所以掌握更快速的训练效率是关键

Recent work in contrastive representation learning for images has found that contrastive objectives can learn better representations than their equivalent
predictive objective
这个发现很有意思,这说明我们可以不需要准确预测每个图片的text caption,这太难了

Other work has found that although generative models of images can learn high quality image representations, they require over an order of magnitude more compute than contrastive models with the same performance
这里又提到了生成模型,在学习表征方面,有监督学习CNN、对比学习CLIP、生成模型Stable Diffusion

We train CLIP from scratch without initializing the image encoder with ImageNet weights or the text encoder with pre-trained weights.
在这么一个大数据集上,甚至比ImageNet还大,加载预训练的ImageNet模型和text encoder模型确实没必要

CLIP is pre-trained to predict if an image and a text snippet are paired together in its dataset. To perform zero-shot classification, we reuse this capability. For each dataset, we use the names of all the classes in the dataset as the set of potential text pairings and predict the most probable (image, text)
pair according to CLIP. In a bit more detail, we first compute the feature embedding of the image and the feature embedding of the set of possible texts by their respective encoders. The cosine similarity of these embeddings is then calculated, scaled by a temperature parameter τ , and normalized into a
probability distribution via a softmax. Note that this prediction layer is a multinomial logistic regression classifier with L2-normalized inputs, L2-normalized weights, no bias, and temperature scaling

Another issue we encountered is that it’s relatively rare in our pre-training dataset for the text paired with the image to be just a single word. Usually the text is a full sentence describing the image in some way. To help bridge this distribution gap, we found that using the prompt template “A photo of a {label}.” to be a good default that helps specify the text is about the content of the image. This often improves performance over the baseline of using only the label text
出现这个问题的原因是模型没能理解语言,不过现在GPT4可以做到了,估计会有点儿突破?
Similar to the “prompt engineering” discussion around GPT3 (Brown et al., 2020; Gao et al., 2020), we have also observed that zero-shot performance can be significantly improved by customizing the prompt text to each task. A few, non exhaustive, examples follow. We found on several fine-grained image classification datasets that it helped to specify the category. For example on Oxford-IIIT Pets, using “A photo of a {label}, a type of pet.” to help provide context worked well. Likewise, on Food101 specifying a type of food and on FGVC Aircraft a type of aircraft helped too. For OCR datasets, we found that putting quotes around the text or number to be recognized improved performance. Finally, we found that on satellite image classification datasets it helped to specify that the images were of this form and we use variants of “a satellite photo of a {label}.”.
这种prompt对于性能的提升是肯定的

We also experimented with ensembling over multiple zeroshot classifiers as another way of improving performance. These classifiers are computed by using different context prompts such as ‘A photo of a big {label}” and “A photo of a small {label}”. We construct the ensemble over the embedding space instead of probability space. This allows us to cache a single set of averaged text embeddings so that the compute cost of the ensemble is the same as using a single classifier when amortized over many predictions
这里使用emsemble的方法提升性能

说白了,比监督学习强在:
1、数据量更多
2、任务种类更多
3、加上文本学习语义信息,不单单是空间信息

we see that zero-shot CLIP is quite weak on several specialized, complex, or abstract tasks such as satellite image classification (EuroSAT and RESISC45), lymph node tumor detection (PatchCamelyon), counting objects in synthetic scenes (CLEVRCounts), self-driving related tasks such as
German traffic sign recognition (GTSRB), recognizing distance to the nearest car (KITTI Distance). These results highlight the poor capability of zero-shot CLIP on more complex tasks.
貌似跟GPT4也有点像?虽然通用性很不错,但是没办法做到全能,特别是复杂任务上,我感觉还是数据的问题吧,当然也有可能是现在的模型架构没办法应对复杂任务,所以需要拆解成更简单的子任务。不可否认的是在业务数据标注上存在加速作用

First, CLIP’s zero-shot classifier is generated via natural language which allows for visual concepts to be directly specified (“communicated”). By contrast,
“normal” supervised learning must infer concepts indirectly from training examples. Context-less example-based learning has the drawback that many different hypotheses can be consistent with the data, especially in the one-shot case. A single image often contains many different visual concepts. Although a capable learner is able to exploit visual cues and heuristics, such as assuming that the concept being demonstrated is the primary object in an image, there is no guarantee
是的,few-shot的难点主要在于,你不知道模型把什么特征跟最终的标签做了关联,所以需要加大样本数据量,才能使模型正确找到这个路径
zero-shot主要是在大数据量上预训练了,所以跟few-shot还是有区别的
我比较看好在大数据上预训练过的大模型


其实这个评估有点儿问题?如何评判稳定性?你这个只是在建立的测试样本集上的结果而已,并不是大量的数据评估结果,特别是放到真实业务场景下的分析结果,我觉得每个类别多点儿数据不是坏事,可以加强特征到标签的连接,特别是捕获正确的特征

If we assume that evaluation datasets are large enough that the parameters of linear classifiers trained on them are well estimated, then, because CLIP’s zero-shot classifier is also a linear classifier, the performance of the fully supervised classifiers roughly sets an upper bound for what zero-shot transfer can achieve
从拟合能力上来看,监督学习可以拟合的性能上限,也是zero-shot可以达到的上限

在大数据上学习到通用表征能力,跟在特定数据集上做监督训练,并不是冲突的

Over the past few years, empirical studies of deep learning
systems have documented that performance is predictable as
a function of important quantities such as training compute
and dataset size
这里提到,近年来的深度学习预测能力,是可以评估的,这个确实有点儿意思哈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1182278.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

我的AIGC部署实践02

我的AIGC部署实践02 上次的教程我们实现了在趋势云平台上创建项目并运行对应的代码。虽然有比较好的结果,不过很多时候我们往往需要根据自己的需要更改代码,那么代码运行及部署的流程是怎么样的呢?让我们继续往下看吧。 1.学习准备 官方代码…

测试工程师面试攻略:教你如何描述项目经验

俗话说的好,知己知彼百战百胜。项目经验说的好不好,直接决定了你值多少钱。满满的干货,先三连再耐心看完。 去面试之前,建议大家把简历写得从业经历和项目经验熟练的背下来,能说出项目经验里的详细的测试情况最好。 一…

工程(十三)——基于激光视觉的SLAM三维重建

博主创建了一个科研互助群Q:772356582,欢迎大家加入讨论。这是一个科研互助群,主要围绕机器人,无人驾驶,无人机方面的感知定位,决策规划,以及论文发表经验,以方便大家很好很快的科研…

了解企业邮箱的外观和功能特点

企业邮箱是什么样子的?企业邮箱不是单一产品,而是由一系列电子邮件服务组成的生态系统。这些服务包括但不限于邮件服务器、客户端、安全解决方案等。这些服务共同构成了企业邮箱的基础设施。 在外观上,企业邮箱和个人邮箱没有太大区别。用户通…

查询优化器:RBO与CBO

SQL查询优化器 1、数据库系统发展简史2、SQL查询优化器3、查询优化器分类4、查询优化器执行过程5、CBO框架Calcite简介 1、数据库系统发展简史 数据库系统诞生于20世纪60年代中期,至今已有近50多年的历史,其发展经历了三代演变,造就了四位图灵…

6个机器学习可解释性框架

1、SHAP SHapley Additive explanation (SHAP)是一种解释任何机器学习模型输出的博弈论方法。它利用博弈论中的经典Shapley值及其相关扩展将最优信贷分配与局部解释联系起来. 举例:基于随机森林模型的心脏病患者预测分类 数据集中每个特征对模型预测的贡献由Shap…

Vscode禁止插件自动更新

由于电脑的vscode版本不是很新。2022.10月份的版本1.7.2,电脑vscode的python插件装的也是2022年4月份的某个版本,但插件经常自动更新,导致python代码无法Debug,解决办法: 点设置,搜autoUpdate, 把红色框选成无

浅析刚入门Python初学者的注意事项

文章目录 一、注意你的Python版本1.print()函数2.raw_input()与input()3.比较符号&#xff0c;使用!替换<>4.repr函数5.exec()函数 二、新手常遇到的问题1、如何写多行程序&#xff1f;2、如何执行.py文件&#xff1f;3、and&#xff0c;or&#xff0c;not4、True和False…

HTML和CSS入门学习

目录 一.HTML 二.CSS 1.CSS作用&#xff1a;美化页面 2.CSS语法 【1】CSS语法规范 【2】如何插入样式表 3.CSS选择器 4.CSS设置样式属性--设置html各种标签的属性 【1】文本属性--设置整段文字的样式 【2】字体属性--设置单个字的样式 【3】链接属性--设置链接的样式…

【Qt绘制小猪】以建造者模式绘制小猪

效果 学以致用&#xff0c;使用设计模式之建造者模式绘制小猪。 代码 接口&#xff1a;申明绘制的步骤 PigBuilder.h #ifndef PIGBUILDER_H #define PIGBUILDER_H#include <QObject> #include <QPainter>class PigBuilder : public QObject {Q_OBJECT public:ex…

行情分析——加密货币市场大盘走势(11.7)

大饼昨日下跌过后开始有回调的迹象&#xff0c;现在还是在做指标修复&#xff0c;大饼的策略保持逢低做多。稳健的依然是不碰&#xff0c;目前涨不上去&#xff0c;跌不下来。 以太昨天给的策略&#xff0c;依然有效&#xff0c;现在以太坊开始回调。 目前来看&#xff0c;回踩…

电动汽车充放电V2G模型

威♥关注“电击小子程高兴的MATLAB小屋”获取更多资料 1主要内容 本程序主要建立电动汽车充放电V2G模型&#xff0c;采用粒子群算法&#xff0c;在保证电动汽车用户出行需求的前提下&#xff0c;为了使工作区域电动汽车尽可能多的消纳供给商场基础负荷剩余的光伏电量&#xf…

【vue3/echarts】vue3中使用echarts/饼图/双轴双数据柱状图

npm下载echarts 引入使用 <script> import Box from "/components/box.vue"; import { onMounted } from vue; import { init } from echarts; export default {components: {Box: Box},setup() {onMounted(() > {// 饼图const charEle document.getElem…

flink的AggregateFunction,merge方法作用范围

背景 AggregateFunction接口是我们经常用的窗口聚合函数&#xff0c;其中有一个merge方法&#xff0c;我们一般情况下也是实现了的&#xff0c;但是你知道吗&#xff0c;其实这个方法只有在你使用会话窗口需要进行窗口合并的时候才需要实现 AggregateFunction.merge方法调用时…

Redis 扩展 RedisBloom 插件,解决缓存击穿、穿透

文章目录 一、概述二、编译准备2.1 升级 make2.2 安装 Python3 三、编译 RedisBloom四、测试 RedisBloom五、应用场景5.1 缓存击穿5.2 缓存穿透5.3 原理总结 六、存在的问题 如果您对Redis的了解不够深入请关注本栏目&#xff0c;本栏目包括Redis安装&#xff0c;Redis配置文件…

计算机基础知识45

JS的RegExp对象(正则) text: 正则校验数据 # T/F match: 匹配 # (3) [s, s, s] //定义 var reg1 new RegExp("^[a-zA-Z][a-zA-Z0-9]{5,11}"); var reg2 /^[a-zA-Z][a-zA-Z0-9]{5,9}$/; //正则校验数据 var res reg1.test(jason666); console.log(res…

二叉树的前序、中序、后序、层序遍历

参考内容&#xff1a; 五分钟让你彻底理解二叉树的非递归遍历 Python实现二叉树的非递归遍历 二叉树遍历——深度优先&#xff08;前中后序&#xff09;广度优先&#xff08;层序遍历&#xff09; 构造二叉树 定义二叉树结构如下 struct node {int data;node *left;node *rig…

移远通信蝉联“年度杰出创新企业”大奖,以核心技术实力永攀行业高峰

11月2日&#xff0c;“国际集成电路展览会暨研讨会”&#xff08;IIC Shenzhen 2023&#xff09;在深圳大中华交易广场重磅启幕。业界领袖共探国内外创新技术与产品成果&#xff0c;并对推动全球电子产业创新做出贡献的企业进行了表彰。其中&#xff0c;全球领先的物联网整体解…

Android 使用.9图 NinePatchDrawable实现动态聊天气泡

最近一段时间&#xff0c;在做一个需求&#xff0c;需要实现一个聊天气泡的动画效果&#xff0c;如下图所示&#xff1a; GitHub源码demo &#xff0c;建议下载demo&#xff0c;运行查看。 动态聊天气泡动画 静态聊天气泡 经过一段时间调研&#xff0c;实现方案如下: 实现方…

使用Redis实现缓存及对应问题解决

一、为什么需要Redis作缓存&#xff1f; 在业务场景中&#xff0c;如果有些数据需要极高频的存取&#xff0c;每次都要在mysql中查询的话代价太大&#xff0c;假如有一个存在于客户端和mysql之间的存储空间&#xff0c;每次可以在这空间中进行存取操作&#xff0c;就会减轻mys…