竞赛选题 深度学习手势识别算法实现 - opencv python

news2024/11/16 17:59:31

文章目录

  • 1 前言
  • 2 项目背景
  • 3 任务描述
  • 4 环境搭配
  • 5 项目实现
    • 5.1 准备数据
    • 5.2 构建网络
    • 5.3 开始训练
    • 5.4 模型评估
  • 6 识别效果
  • 7 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习手势识别算法实现 - opencv python

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 项目背景

手势识别在深度学习项目是算是比较简单的。这里为了给大家会更好的训练。其中的数据集如下:

在这里插入图片描述

3 任务描述

图像分类是根据图像的语义信息将不同类别图像区分开来,是计算机视觉中重要的基本问题。手势识别属于图像分类中的一个细分类问题。虽然与NLP的内容其实没有多大的关系,但是作为深度学习,DNN是一个最为简单的深度学习的算法,它是学习后序CNN、RNN、Lstm以及其他算法深度学习算法的基础。

实践环境:Python3.7,PaddlePaddle1.7.0。

用的仍然是前面多次提到的jupyter notebook,当然我们也可以用本地的pycharm。不过这里需要提醒大家,如果用的是jupyter
notebook作为试验训练,在实验中会占用很大的内存,jupyter
notebook默认路径在c盘,时间久了,我们的c盘会内存爆满,希望我们将其默认路径修改为其他的路径,网上有很多的修改方式,这里限于篇幅就不做说明了。这里需要给大家简要说明:paddlepaddle是百度
AI Studio的一个开源框架,类似于我们以前接触到的tensorflow、keras、caffe、pytorch等深度学习的框架。

4 环境搭配

首先在百度搜索paddle,选择你对应的系统(Windows、macOs、Ubuntu、Centos),然后选择你的安装方式(pip、conda、docker、源码编译),最后选择python的版本(Python2、python3),但是一般选择python3。

左后先则版本(GPU、CPU),但是后期我们用到大量的数据集,因此,我们需要下载GPU版本。,然后将该命令复制到cmd终端,点击安装,这里用到了百度的镜像,可以加快下载安装的速度。

python -m pip install paddlepaddle-gpu==1.8.3.post107 -i https://mirror.baidu.com/pypi/simple

学长电脑是window10系统,用的是pip安装方式,安装的版本是python3,本人的CUDA版本是CUDA10,因此选择的示意图以及安装命令如图所示。这里前提是我们把GPU安装需要的环境配好,网上有很多相关的文章,这里篇幅有限,就不进行展开叙述了。

在这里插入图片描述

环境配好了,接下来就该项目实现。

5 项目实现

5.1 准备数据

首先我们导入必要的第三方库。

import os
import time
import random
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from multiprocessing import cpu_count
from paddle.fluid.dygraph import Pool2D,Conv2D
from paddle.fluid.dygraph import Linear

该数据集是学长自己收集标注的数据集(目前较小):包含0-9共就种数字手势,共2073张手势图片。

图片一共有3100100张,格式均为RGB格式文件。在本次实验中,我们选择其中的10%作为测试集,90%作为训练集。通过遍历图片,根据文件夹名称,生成label。

我按照1:9比例划分测试集和训练集,生成train_list 和 test_list,具体实现如下:

data_path = '/home/aistudio/data/data23668/Dataset' # 这里填写自己的数据集的路径,windows的默认路径是\,要将其路径改为/。
character_folders = os.listdir(data_path)
print(character_folders)
if (os.path.exists('./train_data.list')):
    os.remove('./train_data.list')
if (os.path.exists('./test_data.list')):
    os.remove('./test_data.list')
for character_folder in character_folders:

    with open('./train_data.list', 'a') as f_train:
        with open('./test_data.list', 'a') as f_test:
            if character_folder == '.DS_Store':
                continue
            character_imgs = os.listdir(os.path.join(data_path, character_folder))
            count = 0
            for img in character_imgs:
                if img == '.DS_Store':
                    continue
                if count % 10 == 0:
                    f_test.write(os.path.join(data_path, character_folder, img) + '\t' + character_folder + '\n')
                else:
                    f_train.write(os.path.join(data_path, character_folder, img) + '\t' + character_folder + '\n')
                count += 1
print('列表已生成')

其效果图如图所示:

在这里插入图片描述

这里需要简单的处理图片。需要说明一些函数:

  • data_mapper(): 读取图片,对图片进行归一化处理,返回图片和 标签。
  • data_reader(): 按照train_list和test_list批量化读取图片。
  • train_reader(): 用于训练的数据提供器,乱序、按批次提供数据
  • test_reader():用于测试的数据提供器

具体的实现如下:

def data_mapper(sample):
    img, label = sample
    img = Image.open(img)
    img = img.resize((32, 32), Image.ANTIALIAS)
    img = np.array(img).astype('float32')
    img = img.transpose((2, 0, 1))
    img = img / 255.0
    return img, label
def data_reader(data_list_path):
    def reader():
        with open(data_list_path, 'r') as f:
            lines = f.readlines()
            for line in lines:
                img, label = line.split('\t')
                yield img, int(label)
    return paddle.reader.xmap_readers(data_mapper, reader, cpu_count(), 512)

5.2 构建网络

在深度学习中有一个关键的环节就是参数的配置,这些参数设置的恰当程度直接影响这我们的模型训练的效果。

因此,也有特别的一个岗位就叫调参岗,专门用来调参的,这里是通过自己积累的经验来调参数,没有一定的理论支撑,因此,这一块是最耗时间的,当然也是深度学习的瓶颈。

接下来进行参数的设置。

train_parameters = {
    "epoch": 1,                              #训练轮数
    "batch_size": 16,                        #批次大小
    "lr":0.002,                              #学习率
    "skip_steps":10,                         #每10个批次输出一次结果
    "save_steps": 30,                        #每10个批次保存一次结果
    "checkpoints":"data/"
}

train_reader = paddle.batch(reader=paddle.reader.shuffle(reader=data_reader('./train_data.list'), buf_size=256),
                            batch_size=32)
test_reader = paddle.batch(reader=data_reader('./test_data.list'), batch_size=32)

前面也提到深度神经网络(Deep Neural Networks, 简称DNN)是深度学习的基础。DNN网络图如图所示:

在这里插入图片描述

首先定义一个神经网络,具体如下

class MyLeNet(fluid.dygraph.Layer):
    def __init__(self):
        super(MyLeNet, self).__init__()
        self.c1 = Conv2D(3, 6, 5, 1)
        self.s2 = Pool2D(pool_size=2, pool_type='max', pool_stride=2)
        self.c3 = Conv2D(6, 16, 5, 1)
        self.s4 = Pool2D(pool_size=2, pool_type='max', pool_stride=2)
        self.c5 = Conv2D(16, 120, 5, 1)
        self.f6 = Linear(120, 84, act='relu')
        self.f7 = Linear(84, 10, act='softmax')
    def forward(self, input):
        # print(input.shape) 
        x = self.c1(input)
        # print(x.shape)
        x = self.s2(x)
        # print(x.shape)
        x = self.c3(x)
        # print(x.shape)
        x = self.s4(x)
        # print(x.shape)
        x = self.c5(x)
        # print(x.shape)
        x = fluid.layers.reshape(x, shape=[-1, 120])
        # print(x.shape)
        x = self.f6(x)
        y = self.f7(x)
        return y

这里需要说明的是,在forward方法中,我们在每一步都给出了打印的print()函数,就是为了方便大家如果不理解其中的步骤,可以在实验中进行打印,通过结果来帮助我们进一步理解DNN的每一步网络构成。

5.3 开始训练

接下来就是训练网络。

为了方便我观察实验中训练的结果,学长引入了matplotlib第三方库,直观的通过图来观察我们的训练结果,具体训练网络代码实现如下:

import matplotlib.pyplot as plt
Iter=0
Iters=[]
all_train_loss=[]
all_train_accs=[]
def draw_train_process(iters,train_loss,train_accs):
    title='training loss/training accs'
    plt.title(title,fontsize=24)
    plt.xlabel('iter',fontsize=14)
    plt.ylabel('loss/acc',fontsize=14)
    plt.plot(iters,train_loss,color='red',label='training loss')
    plt.plot(iters,train_accs,color='green',label='training accs')
    plt.legend()
    plt.grid()
    plt.show()

with fluid.dygraph.guard():
    model = MyLeNet()  # 模型实例化
    model.train()  # 训练模式
    opt = fluid.optimizer.SGDOptimizer(learning_rate=0.01,
                                       parameter_list=model.parameters())  # 优化器选用SGD随机梯度下降,学习率为0.001.
    epochs_num = 250  # 迭代次数
    for pass_num in range(epochs_num):
        for batch_id, data in enumerate(train_reader()):
            images = np.array([x[0].reshape(3, 32, 32) for x in data], np.float32)
            labels = np.array([x[1] for x in data]).astype('int64')
            labels = labels[:, np.newaxis]
            # print(images.shape)
            image = fluid.dygraph.to_variable(images)
            label = fluid.dygraph.to_variable(labels)
            predict = model(image)  # 预测
            # print(predict)
            loss = fluid.layers.cross_entropy(predict, label)
            avg_loss = fluid.layers.mean(loss)  # 获取loss值
            acc = fluid.layers.accuracy(predict, label)  # 计算精度
            Iter += 32
            Iters.append(Iter)
            all_train_loss.append(loss.numpy()[0])
            all_train_accs.append(acc.numpy()[0])
            if batch_id != 0 and batch_id % 50 == 0:
                print(
                    "train_pass:{},batch_id:{},train_loss:{},train_acc:{}".format(pass_num, batch_id, avg_loss.numpy(),                                                                                acc.numpy()))
            avg_loss.backward()
            opt.minimize(avg_loss)
            model.clear_gradients()
    fluid.save_dygraph(model.state_dict(), 'MyLeNet')  # 保存模型
draw_train_process(Iters, all_train_loss, all_train_accs)

训练过程以及结果如下:

在这里插入图片描述

前面提到强烈建议大家安装gpu版的paddle框架,因为就是在训练过程中,paddle框架会利用英伟达的GP加速,训练的速度会很快的,而CPU则特别的慢。因此,CPU的paddle框架只是在学习的时候还可以,一旦进行训练,根本不行。

可能GPU需要几秒的训练在CPU可能需要十几分钟甚至高达半个小时。其实不只是paddlepaddle框架建议大家安装GPU版本,其他的类似tensorflow、keras、caffe等框架也是建议大家按安装GPU版本。不过安装起来比较麻烦,还需要大家认真安装。

with fluid.dygraph.guard():
    accs = []
    model_dict, _ = fluid.load_dygraph('MyLeNet')
    model = MyLeNet()
    model.load_dict(model_dict)  # 加载模型参数
    model.eval()  # 训练模式
    for batch_id, data in enumerate(test_reader()):  # 测试集
        images = np.array([x[0].reshape(3, 32, 32) for x in data], np.float32)
        labels = np.array([x[1] for x in data]).astype('int64')
        labels = labels[:, np.newaxis]
        image = fluid.dygraph.to_variable(images)
        label = fluid.dygraph.to_variable(labels)
        predict = model(image)
        acc = fluid.layers.accuracy(predict, label)
        accs.append(acc.numpy()[0])
        avg_acc = np.mean(accs)
    print(avg_acc)

5.4 模型评估

配置好了网络,并且进行了一定的训练,接下来就是对我们训练的模型进行评估,具体实现如下:

在这里插入图片描述

结果还可以,这里说明的是,刚开始我们的模型训练评估不可能这么好,可能存在过拟合或者欠拟合的问题,不过更常见的是过拟合,这就需要我们调整我们的epoch、batchsize、激活函数的选择以及优化器、学习率等各种参数,通过不断的调试、训练最好可以得到不错的结果,但是,如果还要更好的模型效果,其实可以将DNN换为更为合适的CNN神经网络模型,效果就会好很多,关于CNN的相关知识以及实验,我们下篇文章在为大家介绍。最后就是我们的模型的预测。

6 识别效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1181279.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Spring】bean的自动装配

目录 一.byName 二.byType 快捷书写 people1 package org.example;public class People1 {public void eat(){System.out.println("吃饭");} }people2 package org.example;public class People2 {public void sleep(){System.out.println("睡觉");} …

校园安防监控系统升级改造方案:如何实现设备利旧上云与AI视频识别感知?

一、背景与需求分析 随着现代安防监控科技的兴起和在各行各业的广泛应用,监控摄像头成为众所周知的产品,也为人类的工作生活提供了很大的便利。由于科技的发达,监控摄像头的升级换代也日益频繁。每年都有不计其数的摄像头被拆掉闲置&#xf…

第十八章:Swing自述

18.1 Swing概述 18.2:Swing常用窗体 18.2.1:JFrame窗体 package eightth;import java.awt.*; //导入AWT包 import javax.swing.*; //导入Swing包public class JFreamTest {public static void main(String args[]) { // 主方法JFrame jf new JFrame()…

问题 N: A strange lift(BFS)

代码如下&#xff1a; #include<queue> #include<iostream> using namespace std; int main() {int num1;while (scanf("%d", &num) && num){queue<int> disp;int fir 0, end 0;int arr[209] { 0 };int visit[209] { 0 };int fl…

k8s configMap挂载(项目配置文件放到configMap中,不同环境不同配置)

背景说明 项目对接配置文件加密&#xff0c;比如数据库密码、redis密码等。但是密文只能放到指定的配置文件中(important.properties)&#xff0c;该配置文件又不能接收环境变量&#xff0c;所以就很难区分不同环境的不同配置&#xff08;不同环境的数据库密码、redis密码一般…

世微 DC-DC降压恒注驱动芯片 LED汽车大灯 过EMC认证 AP2400

产品特点 宽输入电压范围&#xff1a;5V&#xff5e;100V 可设定电流范围&#xff1a;10mA&#xff5e;6000mA 固定工作频率&#xff1a;150KHZ 内置抖频电路&#xff0c;降低对其他设备的 EMI 干扰 平均电流模式采样&#xff0c;恒流精度更高 0-100%占空比控制&#…

【C++】多态 ⑬ ( 多继承中应用 “ 抽象类 “ | 接口和抽象类 | C++ 语言中接口实现 | 只定义 纯虚函数 的 抽象类作接口 | )

文章目录 一、多继承中应用 " 抽象类 "1、接口和抽象类2、编程语言对接口和多继承的支持3、C 语言中接口实现 二、代码示例 - 多继承中应用 " 抽象类 " 一、多继承中应用 " 抽象类 " 1、接口和抽象类 接口 Interface 和 抽象类 AbstractClass 都…

计算器中处于不同进制时

计算器中处于不同进制时 p10x20, p00x31它俩的位置关系如下,求p1p0的值 计算器软件中, 当光标在不同的进制时,选择左移或右移,得到的结果是不一样的 因为当你处于不同的进制时&#xff0c;你移动的数字 对应的进制数就是你目前所处的进制。 就是说你在计算器中算&#xff0c;…

人大女王大学金融硕士项目:培养引领金融行业未来的的新力量

在全球化的今天&#xff0c;金融行业的发展日新月异&#xff0c;对于专业人才的需求也日益增长。在这个背景下&#xff0c;人大女王大学金融硕士项目应运而生&#xff0c;旨在培养具有全球视野、创新思维和实践能力的金融精英&#xff0c;为金融行业的未来发展注入新的活力。 …

想要搭建网站帮助中心,看这一篇指南就对了!

在现今互联网时代&#xff0c;除了让用户了解产品的功能和一些操作&#xff0c;很多企业都需要在网上进行信息的发布和产品销售等业务活动。而这就需要一个帮助中心&#xff0c;在用户遇到问题或者需要了解更多信息的时候&#xff0c;能够快速地解答他们的疑惑和提供响应的帮助…

安防监控系统EasyCVR平台设备通道绑定AI算法的功能设计与开发实现

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。平台可拓展性强、…

这些面试必备的IC项目资源,你收藏了吗?(可领取)

众所周知&#xff0c;IC行业的技术和经验是敲门砖&#xff0c;也是试金石。其中&#xff0c;IC实战项目就是关键一环。 如果你是出于个人自我学习的需要。 学习完理论基础知识还有很多地方都是一知半解的&#xff0c;接受了大量的信息输入&#xff0c;一定要有输出。所以个人…

soildwork2022怎么样添加螺纹孔?

1.退出草图模式&#xff0c;点击需要添加螺纹孔的物体面&#xff0c;选中“特征”中的“异形孔向导” 2.选中“孔类型”为“直螺纹孔”&#xff0c;“标准”&#xff0c;“类型”&#xff0c;“孔规格”终止条件等。 3.设置完之后选择“位置” 4.鼠标左键在物体面上点一下&…

谭巍主任科普:单纯HPV感染,无宫颈病变,在该时间段可自行清除

在医学上&#xff0c;HPV病毒是人类乳头瘤病毒的缩写&#xff0c;它有100多个亚型&#xff0c;分为高危型和低危型。HPV病毒感染是宫颈癌、肛门癌、外阴癌、喉癌、食道癌和肺癌等多种癌症的主要诱因。而劲松HPV防治诊疗中心主任谭巍则指出其中高危型HPV病毒持续感染是宫颈癌的主…

Kepp-alive的实际运用场景(1)

kepp-alive简单介绍&#xff1a;将组件缓存&#xff0c;不更新数据&#xff0c;被kepp-alive包裹的路由的组件的钩子函数不会生效。 运用场景&#xff1a; 假设我们有这样的一个功能需要实现&#xff0c;我们从主页进入到订单列表页&#xff0c;在从订单列表页进入到订单详情页…

在接口测试中怎么处理开发是否提供接口文档的总结

最近做了好几个项目的接口自动化&#xff0c;接口测试很重要的参考依据就是接口文档&#xff0c;在自动化实施过程中碰到的接口文档也是千差万别&#xff0c;有的项目没有接口文档&#xff0c;有的项目有接口文档&#xff0c;有接口文档的项目&#xff0c;有的很完善&#xff0…

分布式任务调度(03)--中心化设计

把调度和任务执行&#xff0c;隔离成两个部分&#xff1a; 调度中心 只需要负责任务调度属性&#xff0c;触发调度命令 执行器 执行器接收调度命令&#xff0c;去执行具体的业务逻辑 两者都可以进行横向扩容。 1 MQ 调度中心依赖Quartz集群模式&#xff0c;当任务调度时&am…

一文搞懂图像RGB和YUV编码及相互转换

一文搞懂图像RGB和YUV编码及相互转换 硬件花园 • 来源:硬件花园 • 作者:硬件花园 • 2023-05-17 08:37 • 3987次阅读 1 色彩空间和色彩模型 色彩是人眼对于不同频率的光线的不同感受。色彩既是客观存在的,但又是主观感知的,所以不同人对色彩的感知会存在差异。为了规范…

[论文阅读]PV-RCNN++

PV-RCNN PV-RCNN: Point-Voxel Feature Set Abstraction With Local Vector Representation for 3D Object Detection 论文网址&#xff1a;PV-RCNN 论文代码&#xff1a;PV-RCNN 简读论文 这篇论文提出了两个用于3D物体检测的新框架PV-RCNN和PV-RCNN,主要的贡献如下: 提出P…

有电闭锁继电器 YDB-100 100V 辅助电源DC110V JOSEF约瑟 板后安装

YDB-100有电闭锁继电器 1 应用 本继电器用于发电厂和变电站内&#xff0c;用作高压母线合接地刀闸的闭锁元件&#xff0c;以防止高压母线带电时合接地刀闸。 2 主要性能 2 1采用进口集成电路和元器件构成。具有原理先进、性能稳定、可靠性高、动作值精度高、离散值小、整定范围…