简介
BPF,及伯克利包过滤器Berkeley Packet Filter,最初构想提出于 1992 年,其目的是为了提供一种过滤包的方法,并且要避免从内核空间到用户空间的无用的数据包复制行为。它最初是由从用户空间注入到内核的一个简单的字节码构成,它在那个位置利用一个校验器进行检查 —— 以避免内核崩溃或者安全问题 —— 并附着到一个套接字上,接着在每个接收到的包上运行。几年后它被移植到 Linux 上,并且应用于一小部分应用程序上(例如,tcpdump)。其简化的语言以及存在于内核中的即时编译器(JIT),使 BPF 成为一个性能卓越的工具。
然后,在 2013 年,Alexei Starovoitov 对 BPF 进行彻底地改造,并增加了新的功能,改善了它的性能。这个新版本被命名为 eBPF (意思是 “extended BPF”),与此同时,将以前的 BPF 变成 cBPF(意思是 “classic” BPF)。新版本出现了如映射和尾调用tail call这样的新特性,并且 JIT 编译器也被重写了。新的语言比 cBPF 更接近于原生机器语言。并且,在内核中创建了新的附着点。
感谢那些新的钩子,eBPF 程序才可以被设计用于各种各样的情形下,其分为两个应用领域。其中一个应用领域是内核跟踪和事件监控。BPF 程序可以被附着到探针(kprobe),而且它与其它跟踪模式相比,有很多的优点(有时也有一些缺点)。
另外一个应用领域是网络编程。除了套接字过滤器外,eBPF 程序还可以附加到 tc(Linux 流量控制工具)的入站或者出站接口上,以一种很高效的方式去执行各种包处理任务。这种使用方式在这个领域开创了一个新的天地。
并且 eBPF 通过使用为 IO Visor 项目开发的技术,使它的性能进一步得到提升:也为 XDP(“eXpress Data Path”)添加了新的钩子,XDP 是不久前添加到内核中的一种新式快速路径。XDP 与 Linux 栈组合,然后使用 BPF ,使包处理的速度更快。
甚至一些项目,如 P4、Open vSwitch,考虑 或者开始去接洽使用 BPF。其它的一些,如 CETH、Cilium,则是完全基于它的。BPF 是如此流行,因此,我们可以预计,不久之后,将围绕它有更多工具和项目出现 …
什么是BPF程序:
BPF is a highly flexible and efficient virtual machine-like construct in the Linux kernel allowing to execute bytecode at various hook points in a safe manner.
- BPF程序 ----LLVM+Clang----> BPF字节码 ----JIT----> BPF指令集;
- BPF架构采用一种新的虚拟机设计,包含支持x86_64, arm64, mips64等架构的指令集,BPF指令集程序可以高效地工作在基于寄存器架构(r0到r10)的CPU上;
- Linux内核维护者不断开发hook点,可以在hook点上挂载BPF程序,当hook点对应的事件发生就可以执行BPF程序,BPF程序返回hook点预定义的值,Linux内核再根据返回值执行下一步操作(比如XDP类型的BPF程序挂载在指定的网络接口上,有数据包进入该网络接口,BPF程序对数据包进行解析然后根据协议字段进行判断,如果不符合规则就返回XDP_DROP,Linux内核根据该返回值就会丢弃该数据包)。
BPF工作原理:
内核资料直通车:最新Linux内核源码资料文档+视频资料
学习直通车:Linux内核源码/内存调优/文件系统/进程管理/设备驱动/网络协议栈
BPF关键组件:
- BPF Hooks
- BPF映射:
- BPF程序和用户空间程序通过BPF映射通信;
- BPF映射以键/值保存在内核,可以被任何BPF程序访问,用户空间的程序可以通过文件描述符访问BPF映射
- BPF映射类型:BPF映射支持多种数据结构,从而实现内核内部数据的组织以及用户态和内核态的通信,比如哈希表、数组、队列等等
BPF映射用途举例:
1)在BPF程序不中断的情况下修改其运行方式,修改映射中BPF程序访问的配置数据或应用数据,例如黑名单规定的IP列表和域名;
2)运行在内核的BPF程序统计进入指定网络接口的数据包信息,并将统计信息保存到BPF映射,用户态程序可以通过BPF映射获取数据包统计信息;
- BPF辅助函数(BPF Helper Function):如其他语言生态会提供丰富的库提供大量的API函数,BPF也包含各种常用的辅助函数,提供操作内核数据和BPF映射的工具类函数;
资料直通车:最新Linux内核源码资料文档+视频资料
内核学习地址:Linux内核源码/内存调优/文件系统/进程管理/设备驱动/网络协议栈
- 优点:通过定义和维护BPF辅助函数,由BPF辅助函数维护者处理Linux内核版本的迭代更新,对开发者透明,形成稳定的API接口;
- BPF辅助函数列表:
我们可以使用BPF对Linux内核进行跟踪,收集我们想要的内核数据,从而对Linux中的程序进行分析和调试。与其它的跟踪技术相比,使用BPF的主要优点是几乎可以访问Linux内核和应用程序的任何信息,同时,BPF对系统性能影响很小,执行效率很高,而且开发人员不需要因为收集数据而修改程序。
本文将介绍保证BPF程序安全的BPF验证器,然后以BPF程序的工具集BCC为例,分享kprobes和tracepoints类型的BPF程序的使用及程序编写示例。
BPF验证器
BPF借助跟踪探针收集信息并进行调试和分析,与其它依赖于重新编译内核的工具相比,BPF程序的安全性更高。重新编译内核引入外部模块的方式,可能会因为程序的错误而产生系统奔溃。BPF程序的验证器会在BPF程序加载到内核之前分析程序,消除这种风险。
BPF验证器执行的第一项检查是对BPF虚拟机加载的代码进行静态分析,目的是确保程序能够按照预期结束。验证器在进行第一项检查时所做工作为:
- 程序不包含控制循环;
- 程序不会执行超过内核允许的最大指令数;
- 程序不包含任何无法到达的指令;
- 程序不会超出程序界限。
BPF验证器执行的第二项检查是对BPF程序进行预运行,所做工作为:
- 分析BPF程序执行的每条指令,确保不会执行无效指令;
- 检查所有内存指针是否可以正确访问和引用;
- 预运行将程序控制流的执行结果通知验证器,确保BPF程序最终都会执行BPF_EXIT指令。
内核探针 kprobes
内核探针可以跟踪大多数内核函数,并且系统损耗最小。当跟踪的内核函数被调用时,附加到探针的BPF代码将被执行,之后内核将恢复正常模式。
kprobes类BPF程序的优缺点
- 优点 动态跟踪内核,可跟踪的内核函数众多,能够提取内核绝大部分信息。
- 缺点 没有稳定的应用程序二进制接口,可能随着内核版本的演进而更改。
kprobes
kprobe程序允许在执行内核函数之前插入BPF程序。当内核执行到kprobe挂载的内核函数时,先运行BPF程序,BPF程序运行结束后,返回继续开始执行内核函数。下面是一个使用kprobe的bcc程序示例,功能是监控内核函数kfree_skb函数,当此函数触发时,记录触发它的进程pid,进程名字和触发次数,并打印出触发此函数的进程pid,进程名字和触发次数:
#!/usr/bin/python3
# coding=utf-8
from __future__ import print_function
from bcc import BPF
from time import sleep
# define BPF program
bpf_program = """
#include <uapi/linux/ptrace.h>
struct key_t{
u64 pid;
};
BPF_HASH(counts, struct key_t);
int trace_kfree_skb(struct pt_regs *ctx) {
u64 zero = 0, *val, pid;
pid = bpf_get_current_pid_tgid() >> 32;
struct key_t key = {};
key.pid = pid;
val = counts.lookup_or_try_init(&key, &zero);
if (val) {
(*val)++;
}
return 0;
}
"""
def pid_to_comm(pid):
try:
comm = open("/proc/%s/comm" % pid, "r").read().rstrip()
return comm
except IOError:
return str(pid)
# load BPF
b = BPF(text=bpf_program)
b.attach_kprobe(event="kfree_skb", fn_name="trace_kfree_skb")
# header
print("Tracing kfree_skb... Ctrl-C to end.")
print("%-10s %-12s %-10s" % ("PID", "COMM", "DROP_COUNTS"))
while 1:
sleep(1)
for k, v in sorted(b["counts"].items(),key = lambda counts: counts[1].value):
print("%-10d %-12s %-10d" % (k.pid, pid_to_comm(k.pid), v.value))
该bcc程序主要包括两个部分,一部分是python语言,一部分是c语言。python部分主要做的工作是BPF程序的加载和操作BPF程序的map,并进行数据处理。c部分会被llvm编译器编译为BPF字节码,经过BPF验证器验证安全后,加载到内核中执行。python和c中出现的陌生函数可以查下面这两个手册,在此不再赘述:
python部分遇到的陌生函数可以查这个手册: 点此跳转
c部分中遇到的陌生函数可以查这个手册: 点此跳转
需要说明的是,该BPF程序类型是kprobe,它是在这里进行程序类型定义的:
b.attach_kprobe(event="kfree_skb", fn_name="trace_kfree_skb")
- b.attach_kprobe()指定了该BPF程序类型为kprobe;
- event="kfree_skb"指定了kprobe挂载的内核函数为kfree_skb;
- fn_name="trace_kfree_skb"指定了当检测到内核函数kfree_skb时,执行程序中的trace_kfree_skb函数;
BPF程序的第一个参数总为ctx,该参数称为上下文,提供了访问内核正在处理的信息,依赖于正在运行的BPF程序的类型。CPU将内核正在执行任务的不同信息保存在寄存器中,借助内核提供的宏可以访问这些寄存器,如PT_REGS_RC。
程序运行结果如下:
kretprobes
相比于内核探针kprobe程序,kretprobe程序是在内核函数有返回值时插入BPF程序。当内核执行到kretprobe挂载的内核函数时,先执行内核函数,当内核函数返回时执行BPF程序,运行结束后返回。
以上面的BPF程序为例,若要使用kretprobe,可以这样修改:
b.attach_kretprobe(event="kfree_skb", fn_name="trace_kfree_skb")
- b.attach_kretprobe()指定了该BPF程序类型为kretprobe,kretprobe类型的BPF程序将在跟踪的内核函数有返回值时执行BPF程序;
- event="kfree_skb"指定了kretprobe挂载的内核函数为kfree_skb;
- fn_name="trace_kfree_skb"指定了当内核函数kfree_skb有返回值时,执行程序中的trace_kfree_skb函数;
内核静态跟踪点 tracepoint
tracepoint是内核静态跟踪点,它与kprobe类程序的主要区别在于tracepoint由内核开发人员在内核中编写和修改。
tracepoint 程序的优缺点
- 优点 跟踪点是静态的,ABI更稳定,不随内核版本的变化而致不可用。
- 缺点 跟踪点是内核人员添加的,不会全面涵盖内核的所有子系统。
tracepoint 可用跟踪点
系统中所有的跟踪点都定义在
/sys/kernel/debug/traceing/events目录中:
使用命令perf list 也可以列出可使用的tracepoint点:
对于bcc程序来说,以监控kfree_skb为例,tracepoint程序可以这样写:
b.attach_tracepoint(tp="skb:kfree_skb", fn_name="trace_kfree_skb")
bcc遵循tracepoint命名约定,首先是指定要跟踪的子系统,这里是“skb:”,然后是子系统中的跟踪点“kfree_skb”:
总结
本文主要介绍了保证BPF程序安全的BPF验证器,然后以BPF程序的工具集BCC为例,分享了kprobes和tracepoints类型的BPF程序的使用及程序编写示例。本文分享的是内核跟踪,那么用户空间程序该如何跟踪呢,这将在后面的文章中逐步分享,感谢阅读。