K8s:部署 CNI 网络组件+k8s 多master集群部署+负载均衡及Dashboard k8s仪表盘图像化展示管理

news2024/11/26 1:41:30

目录

1 部署 CNI 网络组件

1.1 部署 flannel

1.2 部署 Calico

1.3 部署 CoreDNS

2 负载均衡部署

3 部署 Dashboard


1 部署 CNI 网络组件

1.1 部署 flannel

K8S 中 Pod 网络通信:

●Pod 内容器与容器之间的通信 在同一个 Pod 内的容器(Pod 内的容器是不会跨宿主机的)共享同一个网络命令空间,相当于它们在同一台机器上一样,可以用 localhost 地址访问彼此的端口。

●同一个 Node 内 Pod 之间的通信 每个 Pod 都有一个真实的全局 IP 地址,同一个 Node 内的不同 Pod 之间可以直接采用对方 Pod 的 IP 地址进行通信,Pod1 与 Pod2 都是通过 Veth 连接到同一个 docker0 网桥,网段相同,所以它们之间可以直接通信。

●不同 Node 上 Pod 之间的通信 Pod 地址与 docker0 在同一网段,docker0 网段与宿主机网卡是两个不同的网段,且不同 Node 之间的通信只能通过宿主机的物理网卡进行。 要想实现不同 Node 上 Pod 之间的通信,就必须想办法通过主机的物理网卡 IP 地址进行寻址和通信。因此要满足两个条件:Pod 的 IP 不能冲突;将 Pod 的 IP 和所在的 Node 的 IP 关联起来,通过这个关联让不同 Node 上 Pod 之间直接通过内网 IP 地址通信。

Overlay Network: 叠加网络,在二层或者三层基础网络上叠加的一种虚拟网络技术模式,该网络中的主机通过虚拟链路隧道连接起来(类似于VPN)。

VXLAN: 将源数据包封装到UDP中,并使用基础网络的IP/MAC作为外层报文头进行封装,然后在以太网上传输,到达目的地后由隧道端点解封装并将数据发送给目标地址。

Flannel: Flannel 的功能是让集群中的不同节点主机创建的 Docker 容器都具有全集群唯一的虚拟 IP 地址。 Flannel 是 Overlay 网络的一种,也是将 TCP 源数据包封装在另一种网络包里面进行路由转发和通信,目前支持 udp、vxlan、 host-GW 3种数据转发方式。

#Flannel udp 模式的工作原理: 数据从 node01 上 Pod 的源容器中发出后,经由所在主机的 docker0 虚拟网卡转发到 flannel.1 虚拟网卡,flanneld 服务监听在 flannel.1 虚拟网卡的另外一端。 Flannel 通过 Etcd 服务维护了一张节点间的路由表。源主机 node01 的 flanneld 服务将原本的数据内容封装到 UDP 中后根据自己的路由表通过物理网卡投递给目的节点 node02 的 flanneld 服务,数据到达以后被解包,然后直接进入目的节点的 flannel.1 虚拟网卡,之后被转发到目的主机的 docker0 虚拟网卡,最后就像本机容器通信一样由 docker0 转发到目标容器。

#ETCD 之 Flannel 提供说明: 存储管理Flannel可分配的IP地址段资源 监控 ETCD 中每个 Pod 的实际地址,并在内存中建立维护 Pod 节点路由表

由于 udp 模式是在用户态做转发,会多一次报文隧道封装,因此性能上会比在内核态做转发的 vxlan 模式差。

#vxlan 模式:

vxlan 是一种overlay(虚拟隧道通信)技术,通过三层网络搭建虚拟的二层网络,跟 udp 模式具体实现不太一样:

(1)udp模式是在用户态实现的,数据会先经过tun网卡,到应用程序,应用程序再做隧道封装,再进一次内核协议栈,而vxlan是在内核当中实现的,只经过一次协议栈,在协议栈内就把vxlan包组装好

(2)udp模式的tun网卡是三层转发,使用tun是在物理网络之上构建三层网络,属于ip in udp,vxlan模式是二层实现, overlay是二层帧,属于mac in udp

(3)vxlan由于采用mac in udp的方式,所以实现起来会涉及mac地址学习,arp广播等二层知识,udp模式主要关注路由

#Flannel vxlan 模式的工作原理: vxlan在内核当中实现,当数据包使用vxlan设备发送数据时,会打上vlxan的头部信息,在发送出去,对端解包,flannel.1网卡把原始报文发送到目的服务器。

//在 node01 节点上操作

#上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中

cd /opt/
docker load -i flannel.tar
docker load -i flannel-cni-plugin.tar

mkdir /opt/cni/bin -p
tar zxvf cni-plugins-linux-amd64-v1.3.0.tgz -C /opt/cni/bin

//在 master01 节点上操作

#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络

cd /opt/k8s
kubectl apply -f kube-flannel.yml 

kubectl get pods -A
NAMESPACE      NAME                    READY   STATUS             RESTARTS   AGE
kube-flannel   kube-flannel-ds-g7thg   1/1     Running            0          48m

kubectl get nodes
NAME             STATUS   ROLES    AGE     VERSION
192.168.30.101   Ready    <none>   4h16m   v1.20.15

1.2 部署 Calico

#k8s 组网方案对比:

●flannel方案 需要在每个节点上把发向容器的数据包进行封装后,再用隧道将封装后的数据包发送到运行着目标Pod的node节点上。目标node节点再负责去掉封装,将去除封装的数据包发送到目标Pod上。数据通信性能则大受影响。

●calico方案 Calico不使用隧道或NAT来实现转发,而是把Host当作Internet中的路由器,使用BGP同步路由,并使用iptables来做安全访问策略,完成跨Host转发来。

#Calico 主要由三个部分组成:

Calico CNI插件:主要负责与kubernetes对接,供kubelet调用使用。

Felix:负责维护宿主机上的路由规则、FIB转发信息库等。

BIRD:负责分发路由规则,类似路由器。

Confd:配置管理组件。

#Calico 工作原理: Calico 是通过路由表来维护每个 pod 的通信。Calico 的 CNI 插件会为每个容器设置一个 veth pair 设备, 然后把另一端接入到宿主机网络空间,由于没有网桥,CNI 插件还需要在宿主机上为每个容器的 veth pair 设备配置一条路由规则,用于接收传入的IP包。 有了这样的 veth pair 设备以后,容器发出的IP包就会通过 veth pair 设备到达宿主机,然后宿主机根据路由规则的下一跳地址, 发送给正确的网关,然后到达目标宿主机,再到达目标容器。 这些路由规则都是 Felix 维护配置的,而路由信息则是 Calico BIRD 组件基于 BGP 分发而来。calico 实际上是将集群里所有的节点都当做边界路由器来处理,他们一起组成了一个全互联的网络,彼此之间通过 BGP 交换路由,这些节点我们叫做 BGP Peer。

目前比较常用的时flannel和calico,flannel的功能比较简单,不具备复杂的网络策略配置能力,calico是比较出色的网络管理插件,但具备复杂网络配置能力的同时,往往意味着本身的配置比较复杂,所以相对而言,比较小而简单的集群使用flannel,考虑到日后扩容,未来网络可能需要加入更多设备,配置更多网络策略,则使用calico更好。

//在 master01 节点上操作

#上传 calico.yaml 文件到 /opt/k8s 目录中,部署 CNI 网络

cd /opt/k8s
vim calico.yaml
#修改里面定义Pod网络(CALICO_IPV4POOL_CIDR),与前面kube-controller-manager配置文件指定的cluster-cidr网段一样

   - name: CALICO_IPV4POOL_CIDR
     value: "10.244.0.0/16"

kubectl apply -f calico.yaml

kubectl get pods -n kube-system
NAME                                       READY   STATUS    RESTARTS   AGE
calico-kube-controllers-659bd7879c-w498v   1/1     Running   0          44m
calico-node-h2hzh                          1/1     Running   12         44m
calico-node-jphcv                          1/1     Running   0          44m

#等 Calico Pod 都 Running,节点也会准备就绪

kubectl get nodes

---------- node02 节点部署 ----------

//在 node01 节点上操作

cd /opt/
scp kubelet.sh proxy.sh root@192.168.30.102:/opt/
scp -r /opt/cni root@192.168.30.102:/opt/

//在 node02 节点上操作

#启动kubelet服务

cd /opt/
chmod +x kubelet.sh
./kubelet.sh 192.168.30.102

//在 master01 节点上操作

kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0   10s  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Pending
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   85m  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued

#通过 CSR 请求

kubectl certificate approve node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0

kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0   23s  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   85m  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued

#加载 ipvs 模块

for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done

#使用proxy.sh脚本启动proxy服务
cd /opt/
chmod +x proxy.sh
./proxy.sh 192.168.30.102

#查看群集中的节点状态

kubectl get nodes

1.3 部署 CoreDNS

//在所有 node 节点上操作 #上传 coredns.tar 到 /opt 目录中

cd /opt
docker load -i coredns.tar

//在 master01 节点上操作

#上传 coredns.yaml 文件到 /opt/k8s 目录中,部署 CoreDNS

cd /opt/k8s
kubectl apply -f coredns.yaml

kubectl get pods -n kube-system 
NAME                          READY   STATUS    RESTARTS   AGE
coredns-5ffbfd976d-j6shb      1/1     Running   0          32s

#DNS 解析测试

kubectl run -it --rm dns-test2 --image=busybox:1.28.4 sh
If you don't see a command prompt, try pressing enter.
/ # nslookup kubernetes
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local

Name:      kubernetes
Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local

---------- master02 节点部署 ----------

//从 master01 节点上拷贝证书文件、各master组件的配置文件和服务管理文件到 master02 节点

scp -r /opt/etcd/ root@192.168.30.115:/opt/
scp -r /opt/kubernetes/ root@192.168.30.115:/opt
scp /usr/lib/systemd/system/{kube-apiserver,kube-controller-manager,kube-scheduler}.service root@192.168.30.115:/usr/lib/systemd/system/

//修改配置文件kube-apiserver中的IP

vim /opt/kubernetes/cfg/kube-apiserver
KUBE_APISERVER_OPTS="--logtostderr=true \
--v=4 \
--etcd-servers=https://192.168.80.10:2379,https://192.168.80.11:2379,https://192.168.80.12:2379 \
--bind-address=192.168.30.115 \				#修改
--secure-port=6443 \
--advertise-address=192.168.30.115 \			#修改
......

//在 master02 节点上启动各服务并设置开机自启

systemctl start kube-apiserver.service
systemctl enable kube-apiserver.service
systemctl start kube-controller-manager.service
systemctl enable kube-controller-manager.service
systemctl start kube-scheduler.service
systemctl enable kube-scheduler.service

//查看node节点状态

ln -s /opt/kubernetes/bin/* /usr/local/bin/
kubectl get nodes
kubectl get nodes -o wide			#-o=wide:输出额外信息;对于Pod,将输出Pod所在的Node名
//此时在master02节点查到的node节点状态仅是从etcd查询到的信息,而此时node节点实际上并未与master02节点建立通信连接,因此需要使用一个VIP把node节点与master节点都关联起来

2 负载均衡部署

//配置load balancer集群双机热备负载均衡(nginx实现负载均衡,keepalived实现双机热备)

在lb01、lb02节点上操作

//配置nginx的官方在线yum源,配置本地nginx的yum源

cat > /etc/yum.repos.d/nginx.repo << 'EOF'
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/7/$basearch/
gpgcheck=0
EOF

yum install nginx -y

//修改nginx配置文件,配置四层反向代理负载均衡,指定k8s群集2台master的节点ip和6443端口

vim /etc/nginx/nginx.conf
events {
    worker_connections  1024;
}

#添加
stream {
    log_format  main  '$remote_addr $upstream_addr - [$time_local] $status $upstream_bytes_sent';
    

access_log  /var/log/nginx/k8s-access.log  main;

upstream k8s-apiserver {
    server 192.168.30.105:6443;
    server 192.168.30.115:6443;
    server 192.168.30.106:6443;
}
server {
    listen 6443;
    proxy_pass k8s-apiserver;
}

}

http {
......

//检查配置文件语法

nginx -t   

//启动nginx服务,查看已监听6443端口

systemctl start nginx
systemctl enable nginx
netstat -natp | grep nginx 

//部署keepalived服务

yum install keepalived -y

//修改keepalived配置文件

vim /etc/keepalived/keepalived.conf
! Configuration File for keepalived

global_defs {

接收邮件地址

   notification_email {
     acassen@firewall.loc
     failover@firewall.loc
     sysadmin@firewall.loc
   }

邮件发送地址

   notification_email_from Alexandre.Cassen@firewall.loc
   smtp_server 127.0.0.1
   smtp_connect_timeout 30
   router_id NGINX_MASTER	#lb01节点的为 NGINX_MASTER,lb02节点的为 NGINX_BACKUP
}

#添加一个周期性执行的脚本
vrrp_script check_nginx {
    script "/etc/nginx/check_nginx.sh"	#指定检查nginx存活的脚本路径
}

vrrp_instance VI_1 {
    state MASTER			#lb01节点的为 MASTER,lb02节点的为 BACKUP
    interface ens33			#指定网卡名称 ens33
    virtual_router_id 51	#指定vrid,两个节点要一致
    priority 100			#lb01节点的为 100,lb02节点的为 90
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass 1111
    }
    virtual_ipaddress {
        192.168.30.188/24	#指定 VIP
    }
    track_script {
        check_nginx			#指定vrrp_script配置的脚本
    }
}

//创建nginx状态检查脚本

vim /etc/nginx/check_nginx.sh
#!/bin/bash
#egrep -cv "grep|$$" 用于过滤掉包含grep 或者 $$ 表示的当前Shell进程ID
count=$(ps -ef | grep nginx | egrep -cv "grep|$$")

if [ "$count" -eq 0 ];then
    systemctl stop keepalived
fi


chmod +x /etc/nginx/check_nginx.sh

//启动keepalived服务(一定要先启动了nginx服务,再启动keepalived服务)

systemctl start keepalived
systemctl enable keepalived
ip a				#查看VIP是否生成

//修改node节点上的bootstrap.kubeconfig,kubelet.kubeconfig配置文件为VIP

cd /opt/kubernetes/cfg/
vim bootstrap.kubeconfig 
server: https://192.168.30.188:6443

vim kubelet.kubeconfig
server: https://192.168.30.188:6443

vim kube-proxy.kubeconfig
server: https://192.168.30.188:6443

//重启kubelet和kube-proxy服务

systemctl restart kubelet.service 
systemctl restart kube-proxy.service

//在 lb01 上查看 nginx 和 node 、 master 节点的连接状态

netstat -natp | grep nginx
tcp        0      0 0.0.0.0:6443            0.0.0.0:*               LISTEN      99160/nginx: master 
tcp        0      0 0.0.0.0:80              0.0.0.0:*               LISTEN      99160/nginx: master 
tcp        0      0 192.168.30.107:35038    192.168.30.105:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56352    192.168.30.115:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:35026    192.168.30.105:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.102:36606    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.102:36560    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56358    192.168.30.115:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56340    192.168.30.115:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.101:46622    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.101:46602    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.101:46604    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56304    192.168.30.106:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.102:36624    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:35032    192.168.30.105:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.101:46668    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:35020    192.168.30.105:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.101:46666    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56346    192.168.30.115:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.102:36574    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.102:36558    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56298    192.168.30.106:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56286    192.168.30.106:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.102:36602    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56292    192.168.30.106:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.101:46660    ESTABLISHED 99163/nginx: worker

在 master01 节点上操作

//测试创建pod

kubectl run nginx --image=nginx

//查看Pod的状态信息

kubectl get pods
NAME    READY   STATUS              RESTARTS   AGE
nginx   0/1     ContainerCreating   0          33s   #正在创建中

kubectl get pods
NAME    READY   STATUS    RESTARTS   AGE
nginx   1/1     Running   0          27s          #创建完成,运行中
 			                                  

kubectl get pods -o wide
NAME    READY   STATUS    RESTARTS   AGE   IP             NODE             NOMINATED NODE   READINESS GATES
nginx   1/1     Running   0          77s   172.16.18.65   192.168.30.102   <none>           <none>
//READY为1/1,表示这个Pod中有1个容器

//在对应网段的node节点上操作,可以直接使用浏览器或者curl命令访问

curl 172.17.36.2

//这时在master01节点上查看nginx日志,发现没有权限查看

kubectl logs nginx-dbddb74b8-nf9sk

3 部署 Dashboard

Dashboard 介绍

仪表板是基于Web的Kubernetes用户界面。您可以使用仪表板将容器化应用程序部署到Kubernetes集群,对容器化应用程序进行故障排除,并管理集群本身及其伴随资源。您可以使用仪表板来概述群集上运行的应用程序,以及创建或修改单个Kubernetes资源(例如部署,作业,守护进程等)。例如,您可以使用部署向导扩展部署,启动滚动更新,重新启动Pod或部署新应用程序。仪表板还提供有关群集中Kubernetes资源状态以及可能发生的任何错误的信息。

//在 master01 节点上操作 #上传 recommended.yaml 文件到 /opt/k8s 目录中

cd /opt/k8s
vim recommended.yaml

#默认Dashboard只能集群内部访问,修改Service为NodePort类型,暴露到外部:

kind: Service
apiVersion: v1
metadata:
  labels:
    k8s-app: kubernetes-dashboard
  name: kubernetes-dashboard
  namespace: kubernetes-dashboard
spec:
  ports:

   - port: 443
     targetPort: 8443
     nodePort: 30001     #添加
       type: NodePort          #添加
       selector:
         k8s-app: kubernetes-dashboard

kubectl apply -f recommended.yaml

#创建service account并绑定默认cluster-admin管理员集群角色

kubectl create serviceaccount dashboard-admin -n kube-system
kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin
kubectl describe secrets -n kube-system $(kubectl -n kube-system get secret | awk '/dashboard-admin/{print $1}')

#使用输出的token登录Dashboard https://NodeIP:30001

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1176005.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深度学习中的数据类型介绍:FP32, FP16, TF32, BF16, Int16, Int8 ...

文章目录 0. 前言1. 数据的存储方式2. 不同数据类型介绍2.1 深度学习中常用的数据类型2.2 BF16 类型的优势2.3 不同数据类型的使用场景 0. 前言 相比于 CPU&#xff0c;GPU 在架构设计时将更多的晶体管用于数据处理&#xff0c;而不是数据缓存和流量控制&#xff0c;因此可以高…

【Python基础】Python函数介绍(超全面、缺省参数、多值传参、可变参数等)

函数进阶 1.01. 函数参数和返回值的作用1.1无参数&#xff0c;无返回值1.2 无参数&#xff0c;有返回值1.3 有参数&#xff0c;无返回值1.4 有参数&#xff0c;有返回值 2.不可变和可变的参数3.多值参数 1.01. 函数参数和返回值的作用 函数根据 有没有参数 以及 有没有返回值&…

Maven3.9.1安装及环境变量配置

一、Maven的下载与安装 maven各版本下载地址 打开链接后自行选择对应版本 下载完成后解压安装,最好别选择c盘,安装目录路径等使用英文,避免产生其他问题 我这里选择的是D盘 二、Maven的环境变量配置 2.1、右键点击此电脑选择属性&#xff0c;点击高级系统设置&#xff0c;点…

Coremail与国家信息安全漏洞库(CNNVD)达成深度合作!

漏洞信息共享合作单位证书 近日&#xff0c;Coremail获得由国家信息安全漏洞库&#xff08;CNNVD&#xff09;颁发的“CNNVD漏洞信息共享合作单位”证书。 此证书是国家权威机构对Coremail安全研究技术和漏洞挖掘技术实力的充分肯定&#xff0c;也是双方合作的里程碑。 国家信…

Redis之Java操作连接操作Redis

前言 Java是一种强大的编程语言&#xff0c;而Redis是一个快速且具有高可扩展性的开源键值数据存储系统。使用Java操作Redis可以提高效率和性能&#xff0c;并且能够满足大规模数据存储和处理的需求。在本篇文章中&#xff0c;我们将介绍如何使用Java连接Redis&#xff0c;以及…

企业文件夹同步,怎样让数据管理更高效?

随着企业数据量的不断增加&#xff0c;如何高效地进行文件夹同步已成为企业提升工作效率、确保数据安全的重要一环。飞驰云联的同步软件作为一款专门针对企业级用户的数据同步解决方案&#xff0c;在实践中表现出色&#xff0c;值得信赖。 飞驰云联的同步软件是一款高效、稳定、…

axios下载csv文件下载-功能实现

须将axios 配置中的responseType设置为arraybuffer text/comma-separated-values, text/csv, application/csv, application/excel, application/vnd.ms-excel, application/vnd.msexcel // 下载文件 async exportConsumeList() {try {let res await exportConsumeList…

ASO优化之为应用创建屏幕截图的技巧(上)

屏幕截图是应用商店中最大的视觉元素之一。它们吸引用户的注意力&#xff0c;让他们对应用程序的外观有一个印象。我们需要改善并优化屏幕截图&#xff0c;来提高应用的转化率。 1、将用户的注意力吸引到正确位置。 显示部分屏幕截图而不是完整的设备。通过将原始资源减半&…

SS928 开发记录一 烧写

1.下载ToolPlatform 1.1设置芯片型号 1.2IP系统会自动根据主机设置 1.3选择烧写方式以及 eMMC分区表 1.4选择烧写文件 .bin、 kernel 、rootfs 2.烧录后通过串口连接 3.连接后写入环境变量 4.reset

『亚马逊云科技产品测评』活动征文|游戏出海云服务器选择

授权声明&#xff1a;本篇文章授权活动官方亚马逊云科技文章转发、改写权&#xff0c;包括不限于在 Developer Centre, 知乎&#xff0c;自媒体平台&#xff0c;第三方开发者媒体等亚马逊云科技官方渠道 缘由 在国内流量红利见顶、版号暂停发放后&#xff0c;海外已经成为国内…

风险管理 相关的(ITTO)输入、工具与技术

信息系统项目管理 之「风险管理」相关的&#xff08;ITTO&#xff09;输入、工具与技术、输出 风险管理是项目管理的十大知识领域之一&#xff0c;包括如下7个过程。 1、规划风险管理 定义 规划风险管理是定义如何实施项目风险管理活动的过。 作用 确保风险管理的水平、…

01-详解静态代理,动态代理(JDK动态代理原理和CGLIB动态代理原理)

GoF之代理模式 概述 代理模式是GoF23种设计模式之一,属于结构型设计模式,本质就是通过引入代理对象间接实现对真实对象的操作 业务场景: 系统中有A、B、C三个模块,使用这些模块的前提是需要用户登录 此时就可以为A、B、C三个模块提供一个代理,代理的逻辑请求来了之后先判断…

vue + axios + mock

参考来源&#xff1a;Vue mock.js模拟数据实现首页导航与左侧菜单功能_vue.js_AB教程网 记录步骤&#xff1a;在参考资料来源添加axios步骤 1、安装mock依赖 npm install mock -D //只在开发环境使用 下载完成后&#xff0c;项目文件package.json中的devDependencies就会加…

【已解决】linux下轻松解决大多数软件依赖问题

【已解决】linux下轻松解决大多数软件依赖问题 通过aptitute安装 sudo apt install aptitudesudo aptitude install 软件包的名字以安装opencv过程中sudo apt-get install libgtk2.0-dev失败为例 先装aptitute sudo apt install aptitude再装libgtk2.0-dev sudo aptitude …

HR如何应用人才测评系统来开展招聘?

企业招聘&#xff1a;名额少&#xff0c;应聘者多&#xff0c;这是必然现象&#xff01;如果提高招聘效率&#xff0c;成为企业最为关心的问题。 问题可能有 1、简历多筛选难 每次收到一堆的简历&#xff0c;如何从中筛选出有效的人才&#xff0c;是一件头疼的事&#xff0c…

【文末送书】Python界面开发与PyQt

欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和技术。关…

【微服务】一体化智慧工地管理平台源码

智慧工地系统是一种利用人工智能和物联网技术来监测和管理建筑工地的系统。它可以通过感知设备、数据处理和分析、智能控制等技术手段&#xff0c;实现对工地施工、设备状态、人员安全等方面的实时监控和管理。 一、智慧工地让工程施工智能化 1、内容全面&#xff0c;多维度数…

[开源]免费开源MES系统/可视化数字大屏/自动排班系统

开源系统概述&#xff1a; 万界星空科技免费MES、开源MES、商业开源MES、市面上最好的开源MES、MES源代码、免费MES、免费智能制造系统、免费排产系统、免费排班系统、免费质检系统、免费生产计划系统。 万界星空开源MES制造执行系统的Java开源版本。开源mes系统包括系统管理…

回馈电子负载的特点

随着科技的不断发展&#xff0c;制造工厂正逐渐采用先进的设备和技术来提高生产效率。回馈电子负载作为一种新型的电力设备&#xff0c;其独特的特点为制造工厂带来了诸多优势。回馈电子负载是一种能够将多余的电能回馈到电网的电力设备&#xff0c;广泛应用于制造工厂、数据中…

Android 接入ttf字体文件

一、业务实现 一些炫酷的App总会加一些App自己的字体。这时候需要找UI提供ttf字体文件。 然后实现 TTF&#xff08;TrueType Font&#xff09;字体文件并将其应用到 TextView。 二、大致流程 将 TTF 字体文件添加到你的 Android 项目中&#xff1a; 将 TTF 文件复制到 res/f…