1.计算矩阵的面积和周长:
class Rectangle:
def __init__(self, width, height):
self.width = width
self.height = height
def area(self):
return self.width * self.height
def perimeter(self):
return 2 * (self.width + self.height)
if __name__ == "__main__":
rectangle = Rectangle(5, 10)
print("矩形面积:", rectangle.area())
print("矩形周长:", rectangle.perimeter())
2.将矩阵转置后,计算该矩阵与另一个矩阵的和并返回一个新的矩阵对象。
class Matrix:
def __init__(self,data):
self.data=data
#矩阵转置
def transpose(self):
rows=len(self.data)
cols=len(self.data[0])
transpose_data=[[0 for _ in range(rows)]for _ in range(cols)]
for i in range(rows):
for j in range(cols):
transpose_data[j][i]=self.data[i][j]
return Matrix(transpose_data)
#计算两矩阵之和
def add(self,other_matrix):
rows=len(self.data)
cols=len(self.data[0])
if rows !=len(other_matrix.data) or cols != len(other_matrix.data[0]):
raise ValueError("两个矩阵维度不一致")
result_data=[[0 for _ in range(cols)]for _ in range(rows)]
for i in range(rows):
for j in range(cols):
result_data[i][j]=self.data[i][j]+other_matrix.data[i][j]
return Matrix(result_data)
if __name__ == "__main__":
matrix1=Matrix([[1,2,3],[4,5,6]])
matrix2=Matrix([[7,8,9],[10,11,12]])
print("矩形1的转置:")
transposed_matrix1=matrix1.transpose()
for row in transposed_matrix1.data:
print(row)
print("矩阵1和矩阵2的和:")
sum_matrix=matrix1.add(matrix2)
for row in sum_matrix.data:
print(row)
3.栈的基本操作
class Stack:
def __init__(self):
self.items = []
def push(self, item):
self.items.append(item)
def pop(self):
if self.is_empty():
raise ValueError("栈为空")
return self.items.pop()
def is_empty(self):
return len(self.items) == 0
if __name__ == "__main__":
stack = Stack()
stack.push(1)
stack.push(2)
stack.push(3)
while not stack.is_empty():
print(stack.pop())
4.链表的基本操作
class Node:
def __init__(self, value):
self.value = value
self.next = None
class LinkedList:
def __init__(self, head=None):
self.head = head
def insert(self, value):
new_node = Node(value)
if self.head is None:
self.head = new_node
else:
current = self.head
while current.next is not None:
current = current.next
current.next = new_node
def delete(self, value):
if self.head is None:
return
if self.head.value == value:
self.head = self.head.next
return
current = self.head
while current.next is not None:
if current.next.value == value:
current.next = current.next.next
return
current = current.next
def traverse(self):
current = self.head
while current is not None:
print(current.value)
current = current.next
if __name__ == "__main__":
linked_list = LinkedList()
linked_list.insert(1)
linked_list.insert(2)
linked_list.insert(3)
linked_list.delete(2)
linked_list.traverse()
5.队列的基本操作
class Queue:
def __init__(self):
self.items = []
def is_empty(self):
return len(self.items) == 0
def enqueue(self, item):
self.items.append(item)
def dequeue(self):
if not self.is_empty():
return self.items.pop(0)#对于栈的操作为:self.items.pop()
def size(self):
return len(self.items)
if __name__ == "__main__":
q = Queue()
print(q.is_empty()) # True
q.enqueue(1)
q.enqueue(2)
q.enqueue(3)
print(q.size()) # 3
print(q.dequeue()) # 1
print(q.dequeue()) # 2
print(q.size()) # 1
6.Histogram类封装直方图
(1)定义带一个整数参数n的构造函数,用于初始化存储数据的列表,列表长度为n,列表各元素的初始值为0.
(2)定义实例对象方法addDataPoint(self,i),用于增加一个数据点
(3)定义用于计算数据点个数之和、平均值、最大值、最小值的实例对象方法,即count()、mean()、max()、min()。
(4)定义用于绘制简单直方图的实例对象方法draw()
import random
class Histogram:
def __init__(self,n):
self.__numlist=[]
for i in range(n):
self.__numlist.append(0)
#print(self.__numlist)
def addDataPoint(self,i):
self.__numlist[i]+=1
def count(self,data_account):
return data_account
def mean(self,data_account,List_account):
a=data_account/List_account
return (a)
def Max(self):
return max(self.__numlist)
def Min(self):
return min(self.__numlist)
def draw(self):
for i in range(len(self.__numlist)):
print("{}:".format(i),end="")
for j in range(self.__numlist[i]):
print("#".format(i),end="")
print("")
if __name__=="__main__":
List_account=10#规定numlist的大小
histogram=Histogram(List_account)
Data_account=100
for i in range(0,Data_account):#生成0~99一百个数字
random_number=random.randint(0,9)#随机生成0~9
histogram.addDataPoint(random_number)#将生成的随机数放到列表中
print("数据点个数的个数:{}".format(Data_account))
print("数据点个数的平均值:{}".format(histogram.mean(Data_account, List_account)))
print("数据点个数的最大值{}".format(histogram.Max()))
print("数据点个数的最小值{}".format(histogram.Min()))
histogram.draw()
结果: