Docker数据管理、网络与Cgroup资源限制

news2024/11/27 22:28:03

目录

一、Docker的数据管理

1、数据卷

2、数据卷容器

3、端口映射

4、容器互联

二、Docker网络

2.1Docker网络实现原理

2.2Docker 的网络模式

3.3网络模式详解:

host模式

 container模式

none模式

bridge模式

自定义网络

创建自定义网络

三、Cgroup资源控制:

CPU 资源控制

设置CPU使用率上限

设置CPU资源占用比(设置多个容器时才有效)

设置容器绑定指定的CPU

对内存使用的限制

对磁盘IO配额控制(blkio)的限制

清理docker占用的磁盘空间


一、Docker的数据管理

管理 Docker 容器中数据主要有两种方式:数据卷(Data Volumes)和数据卷容器(DataVolumes Containers)。

1、数据卷

数据卷是一个供容器使用的特殊目录,位于容器中。可将宿主机的目录挂载到数据卷上,对数据卷的修改操作立刻可见,并且更新数据不会影响镜像,从而实现数据在宿主机与容器之间的迁移。数据卷的使用类似于 Linux 下对目录进行的 mount 操作。

例:将宿主机目录/data挂载到容器中的/data1
注意:宿主机本地目录的路径必须是使用绝对路径。如果路径不存在,Docker会自动创建相应的路径

  1. docker run -v /data:/data1 --name web1 -it centos:7 /bin/bash

  2. #-v 选项可以在容器内创建数据

  3. echo "666666" > /data/test.txt

  4. exit

  5. #返回宿主机进行查看

  6. cat /data/test.txt

2、数据卷容器

如果需要在容器之间共享一些数据,最简单的方法就是使用数据卷容器。数据卷容器是一个普通的容器,专门提供数据卷给其他容器挂载使用。

创建一个容器作为数据卷容器:

docker run --name web2 -v /data1 -v /data2 -it centos:7 /bin/bash

使用 --volumes-from 来挂载 web2 容器中的数据卷到新的容器

docker run -it --volumes-from web2 --name web3 centos:7 /bin/bash

3、端口映射

在启动容器的时候,如果不指定对应的端口,在容器外是无法通过网络来访问容器内的服务。端口映射机制将容器内的服务提供给外部网络访问,实质上就是将宿主机的端口映射到容器中,使得外部网络访问宿主机的端口便可访问容器内的服务。

例如:随机映射端口(从32768开始)

docker run -d --name test1 -P(大写) nginx

docker run -d --name test2 -p(小写) 40000:80 nginx        #指定映射端口

浏览器访问

4、容器互联

容器互联是通过容器的名称在容器间建立一条专门的网络通信隧道。简单点说,就是会在源容器和接收容器之间建立一条隧道,接收容器可以看到源容器指定的信息。

创建并运行源容器取名dhj1

docker run -itd -P --name web1 centos:7 /bin/bash 

创建并运行接收容器取名dhj2,使用--link选项指定连接容器以实现容器互联

docker run -itd -P --name web2 --link web1:web1 centos:7 /bin/bash

 #--link 容器名:连接的别名

进dhj2 容器, ping dhj1

二、Docker网络

2.1Docker网络实现原理

Docker使用Linux桥接,在宿主机虚拟一个Docker容器网桥(docker0),Docker启动一个容器时会根据Docker网桥的网段分配给容器一个IP地址,称为Container-IP,同时Docker网桥是每个容器的默认网关。因为在同一宿主机内的容器都接入同一个网桥,这样容器之间就能够通过容器的 Container-IP 直接通信。

  Docker网桥是宿主机虚拟出来的,并不是真实存在的网络设备,外部网络是无法寻址到的,这也意味着外部网络无法直接通过 Container-IP 访问到容器。如果容器希望外部访问能够访问到,可以通过映射容器端口到宿主主机(端口映射),即 docker run 创建容器时候通过 -p 或 -P 参数来启用,访问容器的时候就通过[宿主机IP]:[容器端口]访问容器。

# 查看容器的输出和日志信息

格式:docker logs 容器的ID/名称

2.2Docker 的网络模式

Docker网桥模式有Host、Container、None、Bridge以及自定义网络

安装Docker时,它会自动创建三个网络,bridge(创建容器默认连接到此网络)、 none 、host

查看Docker网络列表

docker network ls   

  • Host:容器将不会虚拟出自己的网卡,配置自己的IP等,而是使用宿主机的IP和端口。
  • Container:创建的容器不会创建自己的网卡,配置自己的IP,而是和一个指定的容器共享IP、端口范围。
  • None:该模式关闭了容器的网络功能。
  • Bridge:默认为该模式,此模式会为每一个容器分配、设置IP等,并将容器连接到一个docker0虚拟网桥,通过docker0网桥以及iptables nat 表配置与宿主机通信。

使用docker run创建Docker容器时,可以用 --net 或 --network 选项指定容器的网络模式

  • host模式:使用 --net=host 指定。
  • none模式:使用 --net=none 指定。
  • container模式:使用 --net=container:NAME_or_ID 指定。
  • bridge模式:使用 --net=bridge 指定,默认设置,可省略
     

3.3网络模式详解:

host模式

相当于Vmware中的桥接模式,与宿主机在同一个网络中,但没有独立IP地址。
Docker使用了Linux的Namespaces技术来进行资源隔离,如PID Namespace隔离进程,Mount Namespace隔离文件系统,Network Namespace隔离网络等。
一个Network Namespace提供了一份独立的网络环境,包括网卡、路由、iptable规则等都与其他的Network Namespace隔离。 一个Docker容器一般会分配一个独立的Network Namespace。 但如果启动容器的时候使用host模式,那么这个容器将不会获得一个独立的Network Namespace, 而是和宿主机共用一个Network Namespace。容器将不会虚拟出自己的网卡、配置自己的IP等,而是使用宿主机的IP和端口。

 container模式

新创建的容器和已经存在的一个容器共享一个Network Namespace,而不是和宿主机共享。
新创建的容器不会创建自己的网卡,配置自己的IP,而是和一个指定的容器共享IP、端口范围等。
两个容器除了网络方面,其他的如文件系统、进程列表等还是隔离的。两个容器的进程可以通过lo网卡设备通信。
 

docker run -itd --name a1 centos:7 /bin/bash
#基于镜像centos:7创建一个名为test1的容器
 
docker inspect -f '{{.State.Pid}}' a1
#查看容器的pid号
 
ls -l /proc/pid号/ns
#查看该容器的命名空间编号
 
docker run -itd --name a2 --net=container:a1 centos:7
#创建c2容器,使用container模式,和c1共享network namespace
 
docker inspect -f '{{.State.Pid}}' a2
#查看test2容器的pid
 
ls -l /proc/pid号/ns
#查看该容器的命令空间编号

none模式

使用none模式,Docker容器拥有自己的Network Namespace,但是,并不为Docker容器进行任何网络配置。 也就是说,这个Docker容器没有网卡、IP、路由等信息。这种网络模式下容器只有lo回环网络,没有其他网卡。这种类型的网络没有办法联网,封闭的网络能很好的保证容器的安全性。

bridge模式

bridge模式是docker的默认网络模式,不用--net参数,就是bridge模式。

相当于Vmware中的 nat 模式,容器使用独立network Namespace,并连接到docker0虚拟网卡。通过docker0网桥以及iptables nat表配置与宿主机通信,此模式会为每一个容器分配Network Namespace、设置IP等,并将一个主机上的 Docker 容器连接到一个虚拟网桥上。    

(1)当Docker进程启动时,会在主机上创建一个名为docker0的虚拟网桥,此主机上启动的Docker容器会连接到这个虚拟网桥上。虚拟网桥的工作方式和物理交换机类似,这样主机上的所有容器就通过交换机连在了一个二层网络中。

(2)从docker0子网中分配一个IP给容器使用,并设置docker0的IP地址为容器的默认网关。在主机上创建一对虚拟网卡veth pair设备。 veth设备总是成对出现的,它们组成了一个数据的通道,数据从一个设备进入,就会从另一个设备出来。因此,veth设备常用来连接两个网络设备。

(3)Docker将 veth pair 设备的一端放在新创建的容器中,并命名为 eth0(容器的网卡),另一端放在主机中, 以 veth* 这样类似的名字命名, 并将这个网络设备加入到 docker0 网桥中。可以通过 brctl show 命令查看。

(4)使用 docker run -p 时,docker实际是在iptables做了DNAT规则,实现端口转发功能。可以使用iptables -t nat -vnL 查看。

自定义网络

直接使用bridge模式,是无法支持指定IP运行docker的,例如执行以下命令就会报错

docker run -itd --name a3 --network bridge --ip 172.17.0.10 centos:7 /bin/bash

创建自定义网络

可以先自定义网络,再使用指定IP运行docker

docker network create --subnet=172.18.0.0/16 --opt "com.docker.network.bridge.name"="docker1"  mynetwork
-------------------------------------------------------------------------------------------
#docker1 为执行 ifconfig -a 命令时,显示的网卡名,如果不使用 --opt 参数指定此名称,那你在使用 ifconfig -a 命令查看网络信息时,看到的是类似 br-110eb56a0b22 这样的名字,这显然不怎么好记。
#mynetwork 为执行 docker network list 命令时,显示的bridge网络模式名称。
-------------------------------------------------------------------------------------------
 docker run -itd --name test4 --net mynetwork --ip 172.18.0.10 centos:7 /bin/bash

查看网卡:docker network ls

删除:docker network rm id/名称

三、Cgroup资源控制:

Docker 通过 Cgroup 来控制容器使用的资源配额,包括 CPU、内存、磁盘三大方面, 基本覆盖了常见的资源配额和使用量控制。
Cgroup 是 ControlGroups 的缩写,是 Linux 内核提供的一种可以限制、记录、隔离进程组所使用的物理资源(如 CPU、内存、磁盘 IO 等等) 的机制,被 LXC、docker 等很多项目用于实现进程资源控制。Cgroup 本身是提供将进程进行分组化管理的功能和接口的基础结构,I/O 或内存的分配控制等具体的资源管理是通过该功能来实现的。

CPU 资源控制

设置CPU使用率上限

Linux通过CFS(Completely Fair Scheduler,完全公平调度器)来调度各个进程对CPU的使用。CFS默认的调度周期是100ms。

我们可以设置每个容器进程的调度周期,以及在这个周期内各个容器最多能使用多少 CPU 时间。

  • 使用 --cpu-period 即可设置调度周期,使用 --cpu-quota 即可设置在每个周期内容器能使用的CPU时间。两者可以配合使用。
  • CFS 周期的有效范围是 1ms~1s,对应的 --cpu-period 的数值范围是 1000~1000000。
  • 而容器的 CPU 配额必须不小于 1ms,即 --cpu-quota 的值必须 >= 1000。

docker run -itd --name a1 centos:7 bin/bash
 
cd /sys/fs/cgroup/cpu/docker/61b36b4accbaefb62f7dfa215ccabe85a34b2080910ac1676a574747ad8cdd2c 
 
cat cpu.cfs_period_us
 
cat cpu.cfs_quota_us
 

#cpu.cfs_period_us:cpu分配的周期(微秒,所以文件名中用 us 表示),默认为100000。
#cpu.cfs_quota_us:表示该cgroups限制占用的时间(微秒),默认为-1,表示不限制。 如果设为50000,表示占用50000/100000=50%的CPU。

CPU压力测试

  1. yum install -y epel-release

  2. yum install -y stress

  3. stress -c 4

  4. #产生四个进程,每个进程都反复不停的计算随机数的平方根

设置CPU资源占用比(设置多个容器时才有效)

Docker 通过 --cpu-shares 指定 CPU 份额,默认值为1024,值为1024的倍数

 docker run -itd --name c1 --cpu-shares 512 centos:7

 docker run -itd --name c2 --cpu-shares 1024 centos:7

 docker stats ##查看容器运

  

  

设置容器绑定指定的CPU

先分配虚拟机1个CPU核数 (和本机cpu核数挂钩)

 docker run -itd --name a3 --cpuset-cpus 1,3 centos:7 /bin/bash     

    

  

  

top后按1查看cup利用率

对内存使用的限制

-m(--memory=) 选项用于限制容器可以使用的最大内存

docker run -itd --name d1 -m 512m centos:7 /bin/bash

docker stats

  

  

//限制可用的 swap 大小, --memory-swap
强调一下,--memory-swap 是必须要与 --memory 一起使用的。

正常情况下,--memory-swap 的值包含容器可用内存和可用 swap。
所以 -m 300m --memory-swap=1g 的含义为:容器可以使用 300M 的物理内存,并且可以使用 700M(1G - 300)的 swap。

docker run -itd --name a4 -m 512m --memory-swap 512m centos:7 /bin/bash

对磁盘IO配额控制(blkio)的限制

--device-read-bps:限制某个设备上的读速度bps(数据量),单位可以是kb、mb(M)或者gb。

例:docker run -itd --name test9 --device-read-bps /dev/sda:1M  centos:7 /bin/bash

--device-write-bps : 限制某个设备上的写速度bps(数据量),单位可以是kb、mb(M)或者gb。

例:docker run -itd --name test10 --device-write-bps /dev/sda:1mb centos:7 /bin/bash

     --device-read-iops :限制读某个设备的iops(次数)

     --device-write-iops :限制写入某个设备的iops(次数)

清理docker占用的磁盘空间

  1. docker system prune -a

  2. #可以用于清理磁盘,删除关闭的容器、无用的数据卷和网络

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1175226.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Mybatis小白从0到90%精讲】12:Mybatis删除 delete, 推荐使用主键删除!

文章目录 前言XML映射文件方式推荐使用主键删除注解方式工具类前言 在实际开发中,我们经常需要删除数据库中的数据,MyBatis可以使用XML映射文件或注解来编写删除(delete)语句,下面是两种方法的示例。 XML映射文件方式 Mapper: int delete(int id);Mapper.xml:

基于SSM的社区智慧养老监护管理平台

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…

私有化部署大模型:5个.Net开源项目

从零构建.Net前后端分离项目 今天一起盘点下,10月份推荐的5个.Net开源项目(点击标题查看详情)。 1、BootstrapBlazor企业级组件库:前端开发的革新之路 BootstrapBlazor是一个用于构建现代Web应用程序的开源框架,它基…

C++笔记之表驱动法

C笔记之表驱动法 code review! 文章目录 C笔记之表驱动法0.数组小技巧1.std::map实现2.结构体实现3.数组和结构体结合实现表驱动法-存储函数指针4.表驱动法概念-ChatGPT5. 直接访问表(Direct Access Table)的示例6. 索引访问表(Indexed Acc…

什么情况造成互斥锁死锁

由于互斥锁的使用不当,导致多个线程无法进行下一步的代码运行,也就是说竞争锁的两个线程互相锁住,导致整个进程无法往下运行。 举个例子: 两个锁,两个线程,两个线程运行的条件都是需要同时获得这两把锁&a…

Canvas 梦幻树生长动画

canvas可以制作出非常炫酷的动画&#xff0c;以下是一个梦幻树的示例。 效果图 源代码 <!DOCTYPE> <html> <head> <meta http-equiv"Content-Type" content"text/html; charsetutf-8" /> <title>梦幻数生长动画</title&…

Python基础入门例程49-NP49 字符列表的长度

最近的博文&#xff1a; Python基础入门例程48-NP48 验证登录名与密码&#xff08;条件语句&#xff09;-CSDN博客 Python基础入门例程47-NP47 牛牛的绩点&#xff08;条件语句&#xff09;-CSDN博客 Python基础入门例程46-NP46 菜品的价格&#xff08;条件语句&#xff09;…

python栈_简单算术表达式_加减乘除

# 从左到右遍历中缀表达式中的每个数字和符号&#xff0c;若是数字就输出&#xff0c;即成为后缀表达式的一部分&#xff1b;若是符号则要分为两种情况&#xff1a; # (1)是括号时&#xff0c;如果是左括号&#xff0c;直接将左括号入栈&#xff0c;如果是右括号则栈顶元素依次…

P37~41 第九章 正弦稳态电路的分析

本章我们重点分析当正弦作为激励&#xff0c;作用在电路在上&#xff0c;经过很短时间内到达稳态之后电路的一些特征。 1、阻抗和导纳对偶 1.1阻抗 1.2RLC串联 以不变的向量为参考向量 电阻只由元件自身决定&#xff0c;阻抗由元件和激励的脚频率决定。 1.3导纳 1.4RLC并…

HTML_案例1_注册页面

用纯html页面&#xff0c;不用css画一个注册页面。 最终效果如下&#xff1a; html页面代码如下&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>注册页面</title> </head>…

二、Hadoop分布式系统基础架构

1、分布式 分布式体系中&#xff0c;会存在众多服务器&#xff0c;会造成混乱等情况。那如何让众多服务器一起工作&#xff0c;高效且不出现问题呢&#xff1f; 2、调度 &#xff08;1&#xff09;架构 在大数据体系中&#xff0c;分布式的调度主要有2类架构模式&#xff1a…

基于晶体结构算法的无人机航迹规划-附代码

基于晶体结构算法的无人机航迹规划 文章目录 基于晶体结构算法的无人机航迹规划1.晶体结构搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要&#xff1a;本文主要介绍利用晶体结构算法来优化无人机航迹规划。 …

【C语法学习】17 - fwrite()函数

文章目录 1 函数原型2 参数3 返回值4 示例 1 函数原型 fwrite()&#xff1a;将ptr指向的内存空间中储存的数据块写入与指定流stream相关联的二进制文件中&#xff0c;函数原型如下&#xff1a; size_t fwrite(const void *ptr, size_t size, size_t count, FILE *stream)2 参…

SQL 左连接 LEFT JOIN 关键字||SQL右连接 RIGHT JOIN 关键字

SQL 左连接 LEFT JOIN 关键字 SQL左链接LEFT JOIN关键字返回左表&#xff08;表1&#xff09;中的所有行&#xff0c;即使在右表&#xff08;表2&#xff09;中没有匹配。如果在正确的表中没有匹配&#xff0c;结果是NULL。 SQL LEFT JOIN 语法 SELECT column_name(s) …

环形链表和相交链表OJ题

环形链表和相交链表OJ题 这篇博客详细讲解了环形数组和相交数组的问题 文章目录 环形链表和相交链表OJ题一、环形链表e.g.1e.g.2 二、相交链表 一、环形链表 环形列表是指尾结点next不指向NULL了&#xff0c;而是指向包括自己的前面任意一个结点。 e.g.1 题目及要求&#xf…

❤️ React的安装和使用(实战篇)

React的安装和使用 一、React的安装和使用 reactJs警告提示&#xff1a; This version of tar is no longer supported, and will not receive security updates. Please upgrade asap 翻译&#xff1a;tar2.2.2&#xff1a;此版本的tar不再受支持&#xff0c;将不会收到安全…

SwiftUI Swift 多个 sheet

今天做一个多个 sheet 的效果&#xff0c;点击下面三个按钮打开不同的 sheet 。 Show me the code import SwiftUIenum CurrentActiveSheet: Identifiable {case add, edit, deletevar id: Int {hashValue} }struct MoreSheet: View {State var currentActiveSheet: CurrentAc…

拓扑排序(Java实现)

一、基本思想 拓扑排序是一种对有向无环图&#xff08;DAG&#xff09;进行排序的算法&#xff0c;它将所有顶点排成一个线性序列&#xff0c;使得对于任意一条有向边&#xff08;u, v&#xff09;&#xff0c;u在序列中都出现在v之前。拓扑排序的思想非常直观&#xff0c;就像…

已完结,给小白的《50讲Python自动化办公》

大家好&#xff0c;这里是程序员晚枫&#xff0c;小红薯也叫这个名。 写在前面 上个周末去成都参加了第8届中国开源年会&#xff0c;认识了很多行业前辈和优秀的同龄人。 我发现在工作之外还能有一番事业的人&#xff0c;都有一个让我羡慕的共同点&#xff1a;有一个拿得出手…

Redis实战 | 使用Redis 的有序集合(Sorted Set)实现排行榜功能,和Spring Boot集成

专栏集锦&#xff0c;大佬们可以收藏以备不时之需 Spring Cloud实战专栏&#xff1a;https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏&#xff1a;https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏&#xff1a;https:/…