基于晶体结构算法的无人机航迹规划-附代码

news2024/11/28 0:57:30

基于晶体结构算法的无人机航迹规划

文章目录

  • 基于晶体结构算法的无人机航迹规划
    • 1.晶体结构搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用晶体结构算法来优化无人机航迹规划。

1.晶体结构搜索算法

晶体结构算法原理请参考:https://blog.csdn.net/u011835903/article/details/122851304

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得晶体结构搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用晶体结构算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,晶体结构算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1175201.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C语法学习】17 - fwrite()函数

文章目录 1 函数原型2 参数3 返回值4 示例 1 函数原型 fwrite():将ptr指向的内存空间中储存的数据块写入与指定流stream相关联的二进制文件中,函数原型如下: size_t fwrite(const void *ptr, size_t size, size_t count, FILE *stream)2 参…

SQL 左连接 LEFT JOIN 关键字||SQL右连接 RIGHT JOIN 关键字

SQL 左连接 LEFT JOIN 关键字 SQL左链接LEFT JOIN关键字返回左表(表1)中的所有行,即使在右表(表2)中没有匹配。如果在正确的表中没有匹配,结果是NULL。 SQL LEFT JOIN 语法 SELECT column_name(s) …

环形链表和相交链表OJ题

环形链表和相交链表OJ题 这篇博客详细讲解了环形数组和相交数组的问题 文章目录 环形链表和相交链表OJ题一、环形链表e.g.1e.g.2 二、相交链表 一、环形链表 环形列表是指尾结点next不指向NULL了,而是指向包括自己的前面任意一个结点。 e.g.1 题目及要求&#xf…

❤️ React的安装和使用(实战篇)

React的安装和使用 一、React的安装和使用 reactJs警告提示: This version of tar is no longer supported, and will not receive security updates. Please upgrade asap 翻译:tar2.2.2:此版本的tar不再受支持,将不会收到安全…

SwiftUI Swift 多个 sheet

今天做一个多个 sheet 的效果,点击下面三个按钮打开不同的 sheet 。 Show me the code import SwiftUIenum CurrentActiveSheet: Identifiable {case add, edit, deletevar id: Int {hashValue} }struct MoreSheet: View {State var currentActiveSheet: CurrentAc…

拓扑排序(Java实现)

一、基本思想 拓扑排序是一种对有向无环图(DAG)进行排序的算法,它将所有顶点排成一个线性序列,使得对于任意一条有向边(u, v),u在序列中都出现在v之前。拓扑排序的思想非常直观,就像…

已完结,给小白的《50讲Python自动化办公》

大家好,这里是程序员晚枫,小红薯也叫这个名。 写在前面 上个周末去成都参加了第8届中国开源年会,认识了很多行业前辈和优秀的同龄人。 我发现在工作之外还能有一番事业的人,都有一个让我羡慕的共同点:有一个拿得出手…

Redis实战 | 使用Redis 的有序集合(Sorted Set)实现排行榜功能,和Spring Boot集成

专栏集锦,大佬们可以收藏以备不时之需 Spring Cloud实战专栏:https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏:https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏:https:/…

LangChain+LLM实战---ChatGPT的工作原理

一个词一个词的输出 ChatGPT能够自动生成类似于人类书写的文本,这是非常了不起和出乎意料的。但它是如何做到的?为什么会有效果呢?我的目的在于大致概述ChatGPT内部发生了什么,然后探讨它为什么能够很好地生成我们认为有意义的文…

[MRCTF2020]你传你呢1

提示 只对php以及phtml文件之类的做了防护content-type.htaccess文件 这里就不整那么麻烦直接抓包测试 首先对后缀测试看过滤了哪些 (php php3 pht php5 phtml phps) 全部被ban了 到这里的后续思路通过上传一些配置文件把上传的图片都以php文件执行 尝试上传图片码, 直接上传成…

[自动化运维工具] Ansible的简单介绍与常用模块详解

文章目录 1. Ansible概述1.1 简介1.2 Ansible的特性1.3 Ansible的组件构成1.4 Ansible的工作原理 2. Ansible环境部署2.1 前置准备2.2 安装ansible2.3 查看基本信息2.4 配置远程主机清单 3. Ansible的常用模块3.1 ansible的基础命令格式3.2 Command模块3.2.1 基本格式和常用参数…

Android 10.0 系统wifi列表显示已连接但无法访问网络问题解决

1.前言 在10.0的系统产品开发中,在wifi模块也很重要,但是在某些情况下对于一些wifi连接成功后,确显示已连接成功,但是无法访问互联网 的情况,所以实际上这时可以正常上网的,就是显示的不正常,所以就需要分析连接流程然后解决问题 如图所示 2.系统wifi列表显示已连接但无…

前端滚动分页

场景 在前端开发中,我们经常碰到分页加载的需求,在PC端通常用分页组件就可以解决这种类型的场景。而当我们在移动端中,分页组件就显得有点不符合逻辑和正常的交互体验,所以滚动分页常常成为我们的一种选择,即页面滚动…

PostgreSQL空间地理信息postGis

PostgreSQL 数据库 PostgreSQL有各种各样的插件扩展其功能,其中地理信息有PostGis插件的支持,丰富PostgreSQL 数据库的使用功能。因此PostgreSQL 结合PostGis可以存储Geometry类型数据的点、线、面等数据,同时还可以结合相应的专有函数做空间…

听GPT 讲Rust源代码--library/std(11)

题图来自 Features of Rust[1] File: rust/library/std/src/sys/itron/time.rs 在Rust源代码中,rust/library/std/src/sys/itron/time.rs文件是用于实现与ITRON操作系统相关的时间功能。ITRON是一种实时操作系统,被广泛用于嵌入式系统中。这个文件中定义…

ps5计时计费管理系统软件怎么使用教学,佳易王PS5体验馆计时收费管理倒计时提醒软件试用下载

ps5计时计费管理系统软件怎么使用教学,佳易王PS5体验馆计时收费管理倒计时提醒软件试用下载 每台机子可以自由设置倒计时提醒的时间,到了时间后,电脑会发出语音提醒同时改变颜色双重提醒方式。也可以在中途关闭提醒或更改提醒时间。每个机子可…

Pycharm安装配置Pyqt5教程(保姆级)

目录 一、前言 1、依赖包 2、工具 二、安装依赖包 三、配置环境 四、配置设计工具 1、Qt Designer 2、PyRcc 3、PyUIC 五、使用 1、界面设计 2、ui文件转化为py文件 一、前言 很多情况下需要为程序设计一个GUI界面,在Python中使用较多的用户界面设计工具…

图像新型拼接

道路摄像头拼接 拼接道路上的摄像头,比较麻烦,如图所示 前后的摄像头都是如此,那么如何拼接摄像头画面呢,像下面这样拼接 测试代码 测试一下代码,使用python import cv2 import numpy as npimg cv2.imread("…

python 成绩统计,输出及格率和优秀率

题目描述: 小蓝给学生们组织了一场考试,卷面总分为100分,每个学生的得分都是一个0到100的整数。 如果得分至少是60分,则称为及格。如果得分至少为85分,则称为优秀。 请计算及格率和优秀率,用百分数表示&am…

【算法训练营】最近公共祖先+求最大连续bit数

算法 1.最近公共祖先求最大连续bit数 1.最近公共祖先 题目链接 【题目解析】: 最近公共祖先表示距离两个节点最近的公共父节点,这道题考察二叉树。【解题思路】: 题目所描述的满二叉树如下: 1 / \ 2 3 / \ / \ 4 5 6 7 上述树中…