Azure 机器学习 - 使用 ONNX 对来自 AutoML 的计算机视觉模型进行预测

news2024/11/23 9:59:24

目录

  • 一、环境准备
  • 二、下载 ONNX 模型文件
    • 2.1 Azure 机器学习工作室
    • 2.2 Azure 机器学习 Python SDK
    • 2.3 生成模型进行批量评分
      • 多类图像分类
  • 三、加载标签和 ONNX 模型文件
  • 四、获取 ONNX 模型的预期输入和输出详细信息
    • ONNX 模型的预期输入和输出格式
      • 多类图像分类
    • 多类图像分类输入格式
    • 多类图像分类输出格式
  • 五、预处理
    • 多类图像分类
    • 多类图像分类 无 PyTorch
    • 多类图像分类 有 PyTorch
    • 使用 ONNX 运行时进行推理
      • 多类图像分类
    • 后期处理
      • 多类图像分类无 PyTorch
      • 多类图像分类有 PyTorch
    • 将预测结果可视化
      • 多类图像分类

本文介绍如何使用 Open Neural Network Exchange (ONNX) 对从 Azure 机器学习中的自动机器学习 (AutoML) 生成的计算机视觉模型进行预测。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

file

一、环境准备

  • 对任何受支持的图像任务(分类、对象检测或实例分段)获取经 AutoML 训练的计算机视觉模型。 详细了解 AutoML 对计算机视觉任务的支持。

  • 安装 onnxruntime 包。 本文中的方法已使用 1.3.0-1.8.0 版本进行了测试。


二、下载 ONNX 模型文件

可以使用 Azure 机器学习工作室 UI 或 Azure 机器学习 Python SDK 从 AutoML 运行下载 ONNX 模型文件。 建议使用具有实验名称和父运行 ID 的 SDK 进行下载。

2.1 Azure 机器学习工作室

在 Azure 机器学习工作室中,通过训练笔记本中生成的指向实验的超链接进入实验,或选择“资产”下的“实验”选项卡中实验名称进入实验 。 然后,选择最佳子运行。

在最佳子运行中,转到“输出+日志”>“train_artifacts” 。 使用“下载”按钮手动下载以下文件:

  • labels.json:包含训练数据集中所有类或标签的文件。
  • model.onnx:ONNX 格式的模型。

file

将下载的模型文件保存到目录。 本文中的示例使用 ./automl_models 目录。

2.2 Azure 机器学习 Python SDK

在 SDK 中,可以使用实验名称和父运行 ID 选择最佳子运行(按主要指标)。 然后,可以下载 labels.json 和 model.onnx 文件 。

以下代码根据相关的主要指标返回最佳子运行。

from azureml.train.automl.run import AutoMLRun

# Select the best child run
run_id = '' # Specify the run ID
automl_image_run = AutoMLRun(experiment=experiment, run_id=run_id)
best_child_run = automl_image_run.get_best_child()

下载 labels.json 文件,其中包含训练数据集中的所有类和标签。

labels_file = 'automl_models/labels.json'
best_child_run.download_file(name='train_artifacts/labels.json', output_file_path=labels_file)

下载 model.onnx 文件。

onnx_model_path = 'automl_models/model.onnx'
best_child_run.download_file(name='train_artifacts/model.onnx', output_file_path=onnx_model_path)

2.3 生成模型进行批量评分

默认情况下,AutoML for Images 支持分类的批量评分。 但是对象检测和实例分段模型不支持批量推理。 若要对于对象检测和实例分段进行批量推断,请使用以下过程为所需的批大小生成 ONNX 模型。 为特定批大小生成的模型不能用于其他批大小。

from azureml.core.script_run_config import ScriptRunConfig
from azureml.train.automl.run import AutoMLRun
from azureml.core.workspace import Workspace
from azureml.core import Experiment

# specify experiment name
experiment_name = ''
# specify workspace parameters
subscription_id = ''
resource_group = ''
workspace_name = ''
# load the workspace and compute target
ws = ''
compute_target = ''
experiment = Experiment(ws, name=experiment_name)

# specify the run id of the automl run
run_id = ''
automl_image_run = AutoMLRun(experiment=experiment, run_id=run_id)
best_child_run = automl_image_run.get_best_child()

使用以下模型特定参数提交脚本。 有关参数的更多详细信息,请参阅模型特定超参数;有关支持的对象检测模型名称,请参阅支持的模型算法部分。

若要获取创建批处理评分模型所需的参数值,请参阅 AutoML 训练运行 outputs 文件夹下生成的评分脚本。 使用最佳子运行评分文件内模型设置变量中提供的超参数值。

多类图像分类

对于多类图像分类,为最佳子运行生成的 ONNX 模型默认支持批量评分。 因此,此任务类型不需要模型特定的参数。

三、加载标签和 ONNX 模型文件

以下代码片段加载 labels.json,其中类名已排序。 也就是说,如果 ONNX 模型预测标签 ID 为 2,则它对应于 labels.json 文件中的第三个索引给出的标签名称。

import json
import onnxruntime

labels_file = "automl_models/labels.json"
with open(labels_file) as f:
    classes = json.load(f)
print(classes)
try:
    session = onnxruntime.InferenceSession(onnx_model_path)
    print("ONNX model loaded...")
except Exception as e: 
    print("Error loading ONNX file: ",str(e))

四、获取 ONNX 模型的预期输入和输出详细信息

使用模型时,务必了解一些特定于模型和特定于任务的详细信息。 这些详细信息包括输入数量和输出数量、用于预处理图像的预期输入形状或格式,以及输出形状,确保你了解特定于模型或特定于任务的输出。

sess_input = session.get_inputs()
sess_output = session.get_outputs()
print(f"No. of inputs : {len(sess_input)}, No. of outputs : {len(sess_output)}")

for idx, input_ in enumerate(range(len(sess_input))):
    input_name = sess_input[input_].name
    input_shape = sess_input[input_].shape
    input_type = sess_input[input_].type
    print(f"{idx} Input name : { input_name }, Input shape : {input_shape}, \
    Input type  : {input_type}")  

for idx, output in enumerate(range(len(sess_output))):
    output_name = sess_output[output].name
    output_shape = sess_output[output].shape
    output_type = sess_output[output].type
    print(f" {idx} Output name : {output_name}, Output shape : {output_shape}, \
    Output type  : {output_type}") 

ONNX 模型的预期输入和输出格式

每个 ONNX 模型都有一组预定义的输入和输出格式。

多类图像分类

此示例应用具有 134 个图像和 4 个类/标签的 fridgeObjects 数据集上训练的模型,以说明 ONNX 模型推理。 有关训练图像分类任务的详细信息,请参阅多类图像分类笔记本。

多类图像分类输入格式

输入是经过预处理的图像。

输入名称输入形状输入类型描述
input1(batch_size, num_channels, height, width)ndarray(float)输入是经过预处理的图像,形状为 (1, 3, 224, 224),批大小为 1,高度和宽度为 224。 这些数字对应于训练示例中 crop_size 所用的值。

多类图像分类输出格式

输出是所有类/标签的 logit 数组。

输出名称输出形状输出类型描述
output1(batch_size, num_classes)ndarray(float)模型返回 logit(没有 softmax)。 例如,对于批大小为 1 和 4 的类,它返回 (1, 4)

此示例使用具有 128 个图像和 4 个类/标签的多标签 fridgeObjects 数据集上训练的模型,以说明 ONNX 模型推理。 有关多标签图像分类的模型训练的详细信息,请参阅多标签图像分类笔记本。

五、预处理

多类图像分类

执行以下预处理步骤,以实现 ONNX 模型推理:

  1. 将图像转换为 RGB。
  2. 将图像大小调整为 valid_resize_sizevalid_resize_size 值,这些值对应于训练期间验证数据集转换时使用的值。 valid_resize_size 的默认值为 256。
  3. 将图像中心裁剪为 height_onnx_crop_sizewidth_onnx_crop_size。 它与 valid_crop_size 对应,默认值为 224。
  4. HxWxC 更改为 CxHxW
  5. 转换为 float 型。
  6. 使用 ImageNet 的 mean = [0.485, 0.456, 0.406]std = [0.229, 0.224, 0.225] 进行规范化。

如果在训练期间为超参数valid_resize_sizevalid_crop_size 选择了不同的值,则应使用这些值。

获取 ONNX 模型所需的输入形状。

batch, channel, height_onnx_crop_size, width_onnx_crop_size = session.get_inputs()[0].shape
batch, channel, height_onnx_crop_size, width_onnx_crop_size

多类图像分类 无 PyTorch

import glob
import numpy as np
from PIL import Image

def preprocess(image, resize_size, crop_size_onnx):
    """Perform pre-processing on raw input image
    
    :param image: raw input image
    :type image: PIL image
    :param resize_size: value to resize the image
    :type image: Int
    :param crop_size_onnx: expected height of an input image in onnx model
    :type crop_size_onnx: Int
    :return: pre-processed image in numpy format
    :rtype: ndarray 1xCxHxW
    """

    image = image.convert('RGB')
    # resize
    image = image.resize((resize_size, resize_size))
    #  center  crop
    left = (resize_size - crop_size_onnx)/2
    top = (resize_size - crop_size_onnx)/2
    right = (resize_size + crop_size_onnx)/2
    bottom = (resize_size + crop_size_onnx)/2
    image = image.crop((left, top, right, bottom))

    np_image = np.array(image)
    # HWC -> CHW
    np_image = np_image.transpose(2, 0, 1) # CxHxW
    # normalize the image
    mean_vec = np.array([0.485, 0.456, 0.406])
    std_vec = np.array([0.229, 0.224, 0.225])
    norm_img_data = np.zeros(np_image.shape).astype('float32')
    for i in range(np_image.shape[0]):
        norm_img_data[i,:,:] = (np_image[i,:,:]/255 - mean_vec[i])/std_vec[i]
             
    np_image = np.expand_dims(norm_img_data, axis=0) # 1xCxHxW
    return np_image

# following code loads only batch_size number of images for demonstrating ONNX inference
# make sure that the data directory has at least batch_size number of images

test_images_path = "automl_models_multi_cls/test_images_dir/*" # replace with path to images
# Select batch size needed
batch_size = 8
# you can modify resize_size based on your trained model
resize_size = 256
# height and width will be the same for classification
crop_size_onnx = height_onnx_crop_size 

image_files = glob.glob(test_images_path)
img_processed_list = []
for i in range(batch_size):
    img = Image.open(image_files[i])
    img_processed_list.append(preprocess(img, resize_size, crop_size_onnx))
    
if len(img_processed_list) > 1:
    img_data = np.concatenate(img_processed_list)
elif len(img_processed_list) == 1:
    img_data = img_processed_list[0]
else:
    img_data = None

assert batch_size == img_data.shape[0]

多类图像分类 有 PyTorch

import glob
import torch
import numpy as np
from PIL import Image
from torchvision import transforms

def _make_3d_tensor(x) -> torch.Tensor:
    """This function is for images that have less channels.

    :param x: input tensor
    :type x: torch.Tensor
    :return: return a tensor with the correct number of channels
    :rtype: torch.Tensor
    """
    return x if x.shape[0] == 3 else x.expand((3, x.shape[1], x.shape[2]))

def preprocess(image, resize_size, crop_size_onnx):
    transform = transforms.Compose([
        transforms.Resize(resize_size),
        transforms.CenterCrop(crop_size_onnx),
        transforms.ToTensor(),
        transforms.Lambda(_make_3d_tensor),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
    
    img_data = transform(image)
    img_data = img_data.numpy()
    img_data = np.expand_dims(img_data, axis=0)
    return img_data

# following code loads only batch_size number of images for demonstrating ONNX inference
# make sure that the data directory has at least batch_size number of images

test_images_path = "automl_models_multi_cls/test_images_dir/*" # replace with path to images
# Select batch size needed
batch_size = 8
# you can modify resize_size based on your trained model
resize_size = 256
# height and width will be the same for classification
crop_size_onnx = height_onnx_crop_size 

image_files = glob.glob(test_images_path)
img_processed_list = []
for i in range(batch_size):
    img = Image.open(image_files[i])
    img_processed_list.append(preprocess(img, resize_size, crop_size_onnx))
    
if len(img_processed_list) > 1:
    img_data = np.concatenate(img_processed_list)
elif len(img_processed_list) == 1:
    img_data = img_processed_list[0]
else:
    img_data = None

assert batch_size == img_data.shape[0]

使用 ONNX 运行时进行推理

使用 ONNX 运行时进行推理因各个计算机视觉任务而异。

多类图像分类


def get_predictions_from_ONNX(onnx_session, img_data):
    """Perform predictions with ONNX runtime
    
    :param onnx_session: onnx model session
    :type onnx_session: class InferenceSession
    :param img_data: pre-processed numpy image
    :type img_data: ndarray with shape 1xCxHxW
    :return: scores with shapes
            (1, No. of classes in training dataset) 
    :rtype: numpy array
    """

    sess_input = onnx_session.get_inputs()
    sess_output = onnx_session.get_outputs()
    print(f"No. of inputs : {len(sess_input)}, No. of outputs : {len(sess_output)}")    
    # predict with ONNX Runtime
    output_names = [ output.name for output in sess_output]
    scores = onnx_session.run(output_names=output_names,\
                                               input_feed={sess_input[0].name: img_data})
    
    return scores[0]

scores = get_predictions_from_ONNX(session, img_data)

后期处理

多类图像分类无 PyTorch

softmax() 应用预测值,以获取每个类的分类置信度分数(概率)。 然后,将预测出概率最高的类。

def softmax(x):
    e_x = np.exp(x - np.max(x, axis=1, keepdims=True))
    return e_x / np.sum(e_x, axis=1, keepdims=True)

conf_scores = softmax(scores)
class_preds = np.argmax(conf_scores, axis=1)
print("predicted classes:", ([(class_idx, classes[class_idx]) for class_idx in class_preds]))

多类图像分类有 PyTorch

conf_scores = torch.nn.functional.softmax(torch.from_numpy(scores), dim=1)
class_preds = torch.argmax(conf_scores, dim=1)
print("predicted classes:", ([(class_idx.item(), classes[class_idx]) for class_idx in class_preds]))

该步骤不同于多类分类。 需要将 sigmoid 应用于 logit(ONNX 输出),以获取多标签图像分类的置信度分数。

将预测结果可视化

多类图像分类

使用标签将输入图像可视化

import matplotlib.image as mpimg
import matplotlib.pyplot as plt
%matplotlib inline

sample_image_index = 0 # change this for an image of interest from image_files list
IMAGE_SIZE = (18, 12)
plt.figure(figsize=IMAGE_SIZE)
img_np = mpimg.imread(image_files[sample_image_index])

img = Image.fromarray(img_np.astype('uint8'), 'RGB')
x, y = img.size

fig,ax = plt.subplots(1, figsize=(15, 15))
# Display the image
ax.imshow(img_np)

label = class_preds[sample_image_index]
if torch.is_tensor(label):
    label = label.item()
    
conf_score = conf_scores[sample_image_index]
if torch.is_tensor(conf_score):
    conf_score = np.max(conf_score.tolist())
else:
    conf_score = np.max(conf_score)

display_text = '{} ({})'.format(label, round(conf_score, 3))
print(display_text)

color = 'red'
plt.text(30, 30, display_text, color=color, fontsize=30)

plt.show()

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1174320.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Liunx基础】之指令(一)

【Liunx基础】之指令(一) 1.ls指令2.pwd命令3.cd指令4.touch指令5.mkdir指令(重要)6.rmdir指令与rm指令(重要)7.man指令(重要)8.cp指令(重要) 📃博客主页: 小…

核电堆芯组件动态特性试验研究

u 核电试验概述 反应堆是核电事业的核心组成部分之一,堆内构件、堆芯燃料组件等部件在冷却剂流动冲击下,会诱发剧烈振动,导致堆芯内试验件流道不稳定。为了保障反应堆的安全运行,根据国家核安全法规规定,有必要对受冷…

单链表的应用(2)

环形链表的约瑟夫问题 编号为 1 到 n 的 n 个人围成一圈。从编号为 1 的人开始报数,报到 m 的人离开。 下一个人继续从 1 开始报数。 n-1 轮结束以后,只剩下一个人,问最后留下的这个人编号是多少? 利用链表实现 思路&#xff1…

基础Redis-结构与命令

结构与命令 1.基础-Redisa.Redis数据结构介绍b.Redis通用命令c.key的结构d.String类型e.Hash类型f.List类型g.Set类型h.SortedSet类型 1.基础-Redis a.Redis数据结构介绍 Redis是一个key-value的数据库,key一般是String类型,不过value的类型多种多样&a…

idea中配置spring boot单项目多端口启动

参照文章 https://zhuanlan.zhihu.com/p/610767685 项目配置如下 下面为 idea 2023,不同版本的设置有区别,但是没那么大,idea 2023默认使用新布局,切换为经典布局即可。 在项目根目录的.idea/workspace.xml文件里添加如下配置 &l…

Java用log4j写日志

日志可以方便追踪和调试问题,以前用log4net写日志,换Java了改用log4j写日志,用法和log4net差不多。 到apache包下载下载log4j的包,解压后把下图两个jar包引入工程 先到网站根下加一个log4j2.xml的配置文件来配置日志的格式和参…

测试开发面试宝典,涨价倒计时

大家好,我是洋子,相信在面试软件测试、测试开发岗位的小伙伴都深有体会,考察的知识点越来越多 不仅会考察到软件测试的理论,让你对某种功能进行测试用例的设计,更难一点会给出一个测试场景进行测试方案的设计&#xf…

C++二分算法:平衡子序列的最大和

涉及知识点 二分 动态规划 #题目 给你一个下标从 0 开始的整数数组 nums 。 nums 一个长度为 k 的 子序列 指的是选出 k 个 下标 i0 < i1 < … < ik-1 &#xff0c;如果这个子序列满足以下条件&#xff0c;我们说它是 平衡的 &#xff1a; 对于范围 [1, k - 1] 内的所…

openGauss学习笔记-115 openGauss 数据库管理-设置安全策略-设置密码安全策略

文章目录 openGauss学习笔记-115 openGauss 数据库管理-设置安全策略-设置密码安全策略115.1 操作步骤 openGauss学习笔记-115 openGauss 数据库管理-设置安全策略-设置密码安全策略 115.1 操作步骤 用户密码存储在系统表pg_authid中&#xff0c;为防止用户密码泄露&#xff…

2023-2024-1高级语言程序设计-一维数组

7-1 逆序输出数组元素的值 从键盘输入n个整数存入一维数组中&#xff0c;然后将数组元素的值逆序输出。 输入格式: 第一行输入整数个数n&#xff1b; 第二行输入n 个整数&#xff0c;数据之间以空格隔开。 输出格式: 逆序输出数组元素的值&#xff0c;每个数据之后跟一个空…

[React] React-Redux 快速入门

文章目录 1.安装 Redux Toolkit 和 React Redux2.创建 Redux Store3.为 React 提供 Redux Store​4.创建 Redux State Slice5.添加 Slice Reducers 到 Store6.在 React 组件中使用 Redux State 和 Actions​7.总结 1.安装 Redux Toolkit 和 React Redux npm install reduxjs/t…

测试服务器端口是否开通,计算退休时间

本案例知识点 netstat -tuln | grep 80 nestat 目前主机打开的网络服务端口&#xff0c;-tuln目前主机启动的服务&#xff0c;如图 报错说参数太多&#xff0c;仔细检查发现if后的中括号内&#xff0c;变量少双引号导致&#xff0c;改完之后运行显示22,25端口开放&#xff0…

关于编程不得不说的事

这些年&#xff0c;互联网爆炸式的发展&#xff0c;促生了无数程序员&#xff0c;也促生了大量 IT培训机构。短短数年间&#xff0c;科班出生的程序员和培训机构出生的程序员呈指数增长。程序员的职业也不再是金饭碗。写了这么多代码&#xff0c;有些感触&#xff0c;所以写下来…

挑战100天 AI In LeetCode Day01(1)

挑战100天 AI In LeetCode Day01&#xff08;1&#xff09; 一、LeetCode介绍二、LeetCode 热题 HOT 100-12.1 题目2.2 题解 三、面试经典 150 题-13.1 题目3.2 题解 一、LeetCode介绍 LeetCode是一个在线编程网站&#xff0c;提供各种算法和数据结构的题目&#xff0c;面向程序…

回顾十大数据恢复软件,帮助用于恢复丢失的文件!

您是否因丢失计算机上的重要文件而感到恐慌&#xff1f;你不是一个人&#xff01;数据丢失是许多人面临的严重问题&#xff0c;但幸运的是&#xff0c;有许多解决方案可以恢复数据。 在本文中&#xff0c;我将回顾十大数据恢复软件&#xff0c;以帮助您恢复丢失的文件&#xf…

线性【SVM】数学原理和算法实现

一. 数学原理 SVM是一类有监督的分类算法&#xff0c;它的大致思想是&#xff1a;假设样本空间上有两类点&#xff0c;如下图所示&#xff0c;我们希望找到一个划分超平面&#xff0c;将这两类样本分开&#xff0c;我们希望这个间隔能够最大化来使得模型泛化能力最强。 如上图所…

Vulnhub-DC-3 靶机复现完整过程

啰嗦两句&#xff1a; 提权之前完成是一个月前做的&#xff0c;当时在提权处出了点问题就搁置了&#xff0c;今天才完成&#xff0c;所以IP地址可能会会有变化 注意&#xff1a;后续出现的IP地址为192.168.200.55同样是靶机IP地址&#xff0c;若本文能有帮助到你的地方&#xf…

Flutter 07 框架和三棵树(Widgets、Elements和RenderObjects)

一、Flutter框架的整体结构&#xff1a; Flutter是Google推出并开源的跨平台开发框架&#xff0c;主打跨平台、高保真、高性能。开发者可以通过Dart语 言开发Flutter应用&#xff0c;一套代码同时运行在ios和Android平台。不仅如此&#xff0c;Flutter还支持Web、桌面、嵌 入应…

论文阅读——What Can Human Sketches Do for Object Detection?(cvpr2023)

论文&#xff1a;https://openaccess.thecvf.com/content/CVPR2023/papers/Chowdhury_What_Can_Human_Sketches_Do_for_Object_Detection_CVPR_2023_paper.pdf 代码&#xff1a;What Can Human Sketches Do for Object Detection? (pinakinathc.me) 一、 Baseline SBIR Fram…

按键开发环境搭建

雷电模拟器 创建虚拟机 2.设置root权限 打开按键精灵连接虚拟机 开启悬浮 mumu模拟器操作 查找端口方法 adb connect 127.0.0.1:16416 设置-应用-所有应用-按键精灵-开启悬浮 步骤二&#xff1a;开启root 处理未root&#xff1a;中途如果有如下未root的情况&#x…