【排序算法】 快速排序(快排)!超详细看这一篇就够了”保姆级教学“

news2025/1/15 16:40:11

在这里插入图片描述

🎥 屿小夏 : 个人主页
🔥个人专栏 : 算法—排序篇
🌄 莫道桑榆晚,为霞尚满天!

文章目录

  • 📑前言
  • 🌤️快速排序的概念
    • ☁️快速排序的由来
    • ☁️快速排序的思想
    • ☁️快速排序的实现步骤
  • 🌤️快速排序(递归版)
    • ☁️快排主框架
    • ☁️Hoare版本快排
      • ⭐代码与图解
      • ⭐代码解析:
    • ☁️挖坑法
      • ⭐代码与图解
      • ⭐代码解析:
    • ☁️双指针法
      • ⭐代码与图解
      • ⭐代码解析
    • ☁️三数取中优化
      • ⭐为什么要三数取中?
      • ⭐三数取中代码实现
    • ☁️小区间优化
      • ⭐什么是区间优化?
      • ⭐小区间优化代码实现
      • ⭐小区间优化的好处
  • 🌤️快速排序(非递归版)
    • ☁️代码解析
  • 🌤️快速排序的特性总结
  • 🌤️全篇总结

📑前言

什么是快排?快排的速度到底有多快呢?它们的思想和实现是什么样的?

本文会对这快速排序进行详解,绝对细致入微!让你彻底搞懂快排!

🌤️快速排序的概念

☁️快速排序的由来

英国计算机科学家Tony Hoare在1960年为了解决计算机上的排序问题,提出了快速排序的算法,最初是为了在英国的英尔兰电子公司(ELLIOTT Brothers)的快速硬件上实现高效的排序算法。

☁️快速排序的思想

快速排序的主要思想是分治法,将一个大问题分割成小问题,解决小问题后再合并它们的结果。

☁️快速排序的实现步骤

  1. 从待排序的数组中选择一个元素,称之为枢纽元(pivot)。
  2. 将数组中小于枢纽元的元素移到枢纽元的左边,将大于枢纽元的元素移到枢纽元的右边,这个过程称为分区(partition)。
  3. 递归地对枢纽元左边的子数组和右边的子数组进行排序。
  4. 当所有子数组都有序时,整个数组就自然有序了。

🌤️快速排序(递归版)

☁️快排主框架

void QuickSort(int* a, int left, int right)
{
// 假设按照升序对array数组中[left, right)区间中的元素进行排序
	if (right <= left)
		return;
// 按照基准值对array数组的 [left, right)区间中的元素进行划分
	//int keyi = PartSort1(a, left, right);
	//int keyi = PartSort2(a, left, right);
	int keyi = PartSort3(a, left, right);
// 划分成功后以div为边界形成了左右两部分 [left, keyi-1) 和 [keyi+1, right)
// 递归排[left, keyi-1)
	QuickSort(a, left, keyi - 1);
// 递归排[keyi+1, right)
	QuickSort(a, keyi + 1, right);
}

上述为快速排序递归实现的主框架,发现与二叉树前序遍历规则非常像,在写递归框架时想想二叉树前序遍历规则即可快速写出来,后序只需分析如何按照基准值来对区间中数据进行划分的方式即可。

☁️Hoare版本快排

⭐代码与图解

在这里插入图片描述

int PartSort1(int* a, int left, int right)
{
	//三数取中(优化)
	//int keyi = NumBers(a, left, right);
	//Swap(&a[keyi], &a[left]);
	int key = left;

	while (left < right)
	{
		while (left < right && a[left] <= a[right])
		{
			right--;
		}
		while (left < right && a[left] <= a[right])
		{
			left++;
		}
		Swap(&a[left], &a[right]);
	}
	Swap(&a[left], &a[key]);
	return left;
}

⭐代码解析:

  1. 首先,定义一个变量key,用于保存基准值的下标,初始值为left。
  2. 进入一个循环,循环条件是left < right,即左右指针没有相遇。
  3. 在循环中,首先从右边开始,找到第一个小于等于基准值的元素的下标,将right指针左移,直到找到符合条件的元素或者left和right相遇。
  4. 然后从左边开始,找到第一个大于基准值的元素的下标,将left指针右移,直到找到符合条件的元素或者left和right相遇。
  5. 如果left < right,说明找到了需要交换的元素,将a[left]和a[right]交换位置。
  6. 重复步骤3到步骤5,直到left和right相遇。
  7. 最后,将基准值a[key]和a[left]交换位置,将基准值放在正确的位置上。
  8. 返回分割点的下标left。

实现了一次快速排序的分割操作,将数组分成两部分,左边的元素都小于等于基准值,右边的元素都大于基准值。然后再通过递归调用这个函数,这就是hoare版的快排。

☁️挖坑法

⭐代码与图解

在这里插入图片描述

int PartSort2(int* a, int left, int right)
{
	//三数取中优化
	//int keyi = NumBers(a, left, right);
	//Swap(&a[keyi], &a[left]);
	int key = a[left];
	int hole = left;//为第一个坑

	while (left < right)
	{
		while (left < right && key <= a[right])
		{
			--right;
		}
		a[hole] = a[right];
		hole = right;

		while (left < right && a[left] <= key)
		{
			++left;
		}
		a[hole] = a[left];
		hole = left;
	}
	a[hole] = key;
	return hole;
}

⭐代码解析:

  1. 定义一个变量key,用于保存基准值,初始值为a[left]。
  2. 定义一个变量hole,用于保存空洞的位置,初始值为left。
  3. 进入一个循环,循环条件是left < right,即左右指针没有相遇。
  4. 在循环中,首先从右边开始,找到第一个小于基准值的元素的下标,将right指针左移,直到找到符合条件的元素或者left和right相遇。
  5. 将a[right]的值赋给a[hole],将空洞的位置移动到right。
  6. 然后从左边开始,找到第一个大于基准值的元素的下标,将left指针右移,直到找到符合条件的元素或者left和right相遇。
  7. 将a[left]的值赋给a[hole],将空洞的位置移动到left。
  8. 重复步骤4到步骤7,直到left和right相遇。
  9. 最后,将基准值key放入空洞的位置a[hole],将基准值放在正确的位置上。
  10. 返回空洞的位置hole。

同样实现了将数据分成两部分,左边的元素都小于等于基准值,右边的元素都大于基准值。

☁️双指针法

⭐代码与图解

在这里插入图片描述

// 快速排序前后指针法
int PartSort3(int* a, int left, int right)
{
	//三数取中优化
	//int midi = NumBers(a, left, right);
	//Swap(&a[left], &a[midi]);

	int prev = left;
	int cur = prev + 1;

	int keyi = left;
	while (cur <= right)
	{
		if (a[cur] < a[keyi] && ++prev != cur)
		{
			Swap(&a[prev], &a[cur]);
		}

		++cur;
	}

	Swap(&a[prev], &a[keyi]);
	return prev;
}

⭐代码解析

  1. 定义两个指针prev和cur,分别指向left和left+1。
  2. 定义一个变量keyi,用于保存基准值的下标,初始值为left。
  3. 进入一个循环,循环条件是cur <= right,即cur指针没有越界。
  4. 在循环中,如果a[cur]小于基准值a[keyi],则将prev指针右移一位,并交换a[prev]和a[cur]的值,保证prev指针之前的元素都小于基准值。
  5. 将cur指针右移一位。
  6. 重复步骤4到步骤6,直到cur指针越界。
  7. 最后,将基准值a[keyi]和a[prev]交换位置,将基准值放在正确的位置上。
  8. 返回分割点的下标prev。

同样实现了将数据分成两部分,左边的元素都小于等于基准值,右边的元素都大于基准值。

☁️三数取中优化

⭐为什么要三数取中?

  1. 三数取中是为了选择一个更好的基准值,以提高快速排序的效率。在快速排序中,选择一个合适的基准值是非常重要的,它决定了每次分割的平衡性。

  2. 快速排序是通过一趟排序将待排序的数据分割成独立的两部分,其中一部分的所有数据都比另一部分的小,然后再对这两部分分别进行快速排序,递归地进行下去,直到整个序列有序。

  3. 如果每次选择的基准值都是最左边或最右边的元素,那么在某些情况下,快速排序的效率可能会降低。例如,当待排序序列已经有序时,如果每次选择的基准值都是最左边或最右边的元素,那么每次分割得到的两个子序列的长度差可能会非常大,导致递归深度增加,快速排序的效率降低。

  4. 而通过三数取中的优化,可以选择一个更好的基准值,使得每次分割得到的两个子序列的长度差更小,从而提高快速排序的效率。

  5. 具体来说,三数取中的优化是选择待排序序列的左端、右端和中间位置的三个元素,然后取它们的中值作为基准值。这样选择的基准值相对于最左边或最右边的元素,更接近整个序列的中间位置,可以更好地平衡分割后的两个子序列的长度,从而提高快速排序的效率。

  6. 通过三数取中的优化,可以减少递归深度,提高分割的平衡性,使得快速排序的效率更稳定,适用于各种不同的输入情况。

⭐三数取中代码实现

//三数取中
int NumBers(int* a, int left, int right)
{
	int mid = (left + right) / 2;
	// left mid right
	if (a[left] < a[mid])
	{
		if (a[mid] < a[right])
		{
			return mid;
		}
		else if (a[left] > a[right])  // mid是最大值
		{
			return left;
		}
		else
		{
			return right;
		}
	}
	else // a[left] > a[mid]
	{
		if (a[mid] > a[right])
		{
			return mid;
		}
		else if (a[left] < a[right]) // mid是最小
		{
			return left;
		}
		else
		{
			return right;
		}
	}
}

☁️小区间优化

⭐什么是区间优化?

小区间优化是指在快速排序中,当待排序的子序列的长度小于一定阈值时,不再继续使用快速排序,而是转而使用直接插入排序。

⭐小区间优化代码实现

void QuickSort(int* a, int left, int right)
{
	if (right <= left)
		return;
	if(right - left + 1 > 10)
	{
        int keyi = PartSort3(a, left, right);
		QuickSort(a, left, keyi - 1);
		QuickSort(a, keyi + 1, right);
	}
	else
	{
		InsertSort(a + left,right - left + 1);
	}
}

⭐小区间优化的好处

  1. 减少递归深度:使用插入排序来处理较小的子序列,可以减少递归的深度,从而减少了函数调用的开销。
  2. 提高局部性:插入排序是一种稳定的排序算法,它具有良好的局部性,可以充分利用已经有序的部分序列。对于较小的子序列,插入排序的效率更高。
  3. 减少分割次数:对于较小的子序列,使用插入排序可以减少分割的次数。快速排序的分割操作需要移动元素,而插入排序只需要进行元素的比较和交换,因此在较小的子序列中使用插入排序可以减少分割操作的次数。

小区间优化可以在一定程度上提高快速排序的性能。它通过减少递归深度、提高局部性和减少分割次数来优化算法的效率,特别适用于处理较小的子序列。

🌤️快速排序(非递归版)

这里需要借助栈的来实现非递归.关于栈详情见:数据结构剖析–栈

// 快速排序 非递归实现
void QuickSortNonR(int* a, int left, int right)
{
	Stack st;
	StackInit(&st);
	StackPush(&st, right);
	StackPush(&st, left);

	while (!StackEmpty(&st))
	{
		int begin = StackTop(&st);
		StackPop(&st);
		int end = StackTop(&st);
		StackPop(&st);

		int keyi = PartSort3(a, begin, end);
		if (keyi + 1 < end)
		{
			StackPush(&st, end);
			StackPush(&st, keyi + 1);
		}
		if (begin < keyi - 1)
		{
			StackPush(&st, keyi - 1);
			StackPush(&st, begin);
		}
	}
	StackDestroy(&st);
}

☁️代码解析

  1. 将整个序列的起始和结束位置入栈。然后,进入循环,不断从栈中取出子序列的起始和结束位置。
  2. 在每次循环中,通过PartSort3函数将当前子序列分割成两部分,并得到基准值的下标keyi。如果基准值右边的子序列长度大于1,则将右边子序列的起始和结束位置入栈。如果基准值左边的子序列长度大于1,则将左边子序列的起始和结束位置入栈。
  3. 循环继续,直到栈为空,表示所有的子序列都已经排序完成。

通过使用栈来模拟递归的过程,非递归实现避免了递归调用的开销,提高了快速排序的效率。

🌤️快速排序的特性总结

  1. 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序

  2. 时间复杂度:O(N*logN)在这里插入图片描述

  3. 空间复杂度:O(logN)

  4. 稳定性:不稳定

🌤️全篇总结

​ 本章对快排从其思想到实现,一步步由浅入深的讲解,相信聪明的你看到这里已经对快排有一个明白的理解了!

看到这里希望给博主留个:👍点赞🌟收藏⭐️关注!

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1172715.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

在Python中添加Selenium Web Driver等待

本文将介绍在Python中在Selenium Web驱动程序中添加等待的示例。 Python Selenium Web 驱动程序等待 大多数 Web 应用程序都使用 AJAX 技术。 因此&#xff0c;网页上存在的不同元素需要不同的时间间隔才能完全上传&#xff0c;因为硒在网页上存在之前无法找到任何文本。 我们…

康耐视深度学习ViDi-Workspace菜单介绍与Workspace侧拉菜单

Workspace菜单介绍 New ------- 新建一个程序&#xff0c;点击后会呼出如下窗口&#xff0c;输入需要建立的程序的名字。然后点击OK按钮&#xff0c;就会建立一个新的程序。 Save --------- 保存当前的程序 Close -------- 关闭当前的程序 Delete ------ 删除当前的程序 Save …

数字媒体技术基础之:ICC 配置文件

ICC 配置文件&#xff08;也称为 ICC 色彩配置文件或 ICC 色彩描述文件&#xff09;是由国际色彩联盟&#xff08;International Color Consortium, ICC&#xff09;制定的一种标准文件格式&#xff0c;用于在不同的设备和软件之间保持颜色的一致性。 ICC 配置文件包含有关设备…

“凸函数”是什么?

凸函数&#xff08;英文&#xff1a;Convex function&#xff09;是指函数图形上&#xff0c;任意两点连成的线段&#xff0c;皆位于图形的上方&#xff0c;如单变数的二次函数和指数函数。二阶可导的一元函数为凸&#xff0c;当且仅当其定义域为凸集&#xff0c;且函数的二阶导…

1-Docker虚拟化平台技术概述及简介

1.虚拟化技术概述及简介 通俗的说,虚拟化就是把物理资源转变为逻辑上可以管理的资源,以打破物理结构间的壁垒,计算元件运行在虚拟的基础上而不是真实的基础上,可以扩大硬件的容量,简化软件的重新配置过程。允许一个平台同时运行多个操作系统,并且应用程序都可以在相互独…

JavaScript设计模式之责任链模式

适用场景&#xff1a;一个完整的流程&#xff0c;中间分成多个环节&#xff0c;各个环节之间存在一定的顺序关系&#xff0c;同时中间的环节的个数不一定&#xff0c;可能添加环节&#xff0c;也可能减少环节&#xff0c;只要保证顺序关系就可以。 如下图&#xff1a; ES5写法…

C++基础——对于C语言缺点的补充(1)

目录 1.命名空间&#xff1a; 1.1 为什么要引入命名空间&#xff1a; 1.2 命名空间的作用&#xff1a; 1.3 如何访问命名空间内的变量&#xff1a; 1.4 命名空间的嵌套&#xff1a; 1.5 不同文件下同名命名空间的合并&#xff1a; 1.6 命名空间的展开&#xff1a; 2. C…

【计算机网络笔记】TCP连接管理(图解三次握手和四次挥手)

系列文章目录 什么是计算机网络&#xff1f; 什么是网络协议&#xff1f; 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能&#xff08;1&#xff09;——速率、带宽、延迟 计算机网络性能&#xff08;2&#xff09;…

SpringBoot开发组件总结

大家好&#xff0c;今天学习了SpringBoot中间件开发&#xff0c;在学习后总结记录下。 在开发的过程中&#xff0c;把一些公共的非业务的代码提炼出来&#xff0c;做成一个公用的组件&#xff0c;减少开发成本和风险&#xff0c;今天学习的是一个白名单控制组件&#xff0c;记…

PHP之getimagesize获取网络图片尺寸、类型信息

[0]&#xff1a;图像宽度&#xff08;以像素为单位&#xff09;[1]&#xff1a;图像高度&#xff08;以像素为单位&#xff09;[2]&#xff1a;图像类型的标识符[3]&#xff1a;包含字符串的属性&#xff0c;用于布局img元素&#xff08;例如&#xff1a;width"xxx" …

CSS中calc(80vw - 100px)为什么不加空格会不生效?

问题起因 今天再使用calc时发现无法生效&#xff0c;我的写法是&#xff1a; width: calc(100%-100px);页面无效果&#xff0c;加空格后就发现有效果了&#xff1a; width: calc(100% - 100px);有亿点疑惑&#xff0c;这是为什么&#xff1f; calc是什么&#xff1f; css3的…

基于51单片机土壤湿度检测及自动浇花系统仿真(带时间显示)

wx供重浩&#xff1a;创享日记 对话框发送&#xff1a;单片机浇花 获取完整源码源文件仿真源文件原理图源文件论文报告等 单片机土壤湿度检测及自动浇花系统仿真&#xff08;带时间显示&#xff09; 具体功能&#xff1a; &#xff08;1&#xff09;液晶第一行显示实际湿度&am…

成员变量为动态数据时不可轻易使用

问题描述 业务验收阶段&#xff0c;遇到了一个由于成员变量导致的线程问题 有一个kafka切面&#xff0c;用来处理某些功能在调用前后的发送消息&#xff0c;资产类型type是成员变量定义&#xff1b; 资产1类型推送消息是以zichan1为节点&#xff1b;资产2类型推送消息是以zi…

python算法例6 快速幂

1. 问题描述 计算&#xff0c;其中a、b和n都是32位的非负整数。 2. 问题示例 例如&#xff1a;。 3.代码实现 计算a的n次幂对b取余&#xff0c;可以使用快速幂算法。这个算法通过减少乘法和取余操作的次数来提高效率。 def pow_mod(a, n, b):result 1while n > 0:if …

园区网真实详细配置大全案例

实现要求&#xff1a; 1、只允许行政部电脑对全网telnet管理 2、所有dhcp都在核心 3、wifi用户只能上外网&#xff0c;不能访问局域网其它电脑 4、所有接入交换机上bpdu保护 5、只允许vlan 10-40上网 5、所有接入交换机开dhcp snoop 6、所有的交换机指定核心交换机为ntp时间服务…

【Unity数据交互】游戏中常用到的Json序列化

ˊˊ &#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1…

独创改进 | RT-DETR 引入双向级联特征融合结构 RepBi-PAN | 附手绘结构图原图

本专栏内容均为博主独家全网首发,未经授权,任何形式的复制、转载、洗稿或传播行为均属违法侵权行为,一经发现将采取法律手段维护合法权益。我们对所有未经授权传播行为保留追究责任的权利。请尊重原创,支持创作者的努力,共同维护网络知识产权。 文章目录 YOLOv6贡献RepBi-…

面向网络安全-Python语言

目录 1、变量 2、字符串 3、列表 4、字典 5、网络 6、条件选择语句 7、异常处理 1、变量 变量是指储存在某个内存地址上的数据 主要有&#xff1a;整型数、实数、布尔值、字符串、列表、元组、字典 这些数据在声明后&#xff0c;解释器就会自动确定每个变量的类型&…

【云原生 | Docker】Linux 定时自动化备份Mysql数据到本地 Windows 最佳实践,确定不来看看?

&#x1f935;‍♂️ 个人主页: AI_magician &#x1f4e1;主页地址&#xff1a; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 &#x1f468;‍&#x1f4bb;景愿&#xff1a;旨在于能和更多的热爱计算机的伙伴一起成长&#xff01;&#xff01;&…

C#,数值计算——偏微分方程,Mgfas的计算方法与源程序

1 文本格式 using System; using System.Collections.Generic; namespace Legalsoft.Truffer { public class Mgfas { public int n { get; set; } public int ng { get; set; } public double[,] uj; public double[,] uj1 { get; …