【入门Flink】- 05Flink运行时架构以及一些核心概念

news2024/12/24 17:21:51

系统架构

Flink运行时架构Standalone会话模式为例

image-20231104111417913

1)作业管理器(JobManager)

JobManager 是一个 Flink 集群中任务管理和调度的核心,是控制应用执行的主进程。每个应用都应该被唯一的 JobManager 所控制执行。

JobManger 又包含 3 个不同的组件。

(1)JobMaster

JobMaster 是 JobManager 中最核心的组件,负责处理单独的作业(Job)。JobMaster和具体的 Job 是一一对应的,多个 Job 可以同时运行在一个 Flink 集群中,每个Job都有一个自己的 JobMaster

  1. 在作业提交时,JobMaster 会先接收到要执行的应用。JobMaster 会把JobGraph转换成一个物理层面的数据流图,这个图被叫作“执行图”(ExecutionGraph),它包含了所有可以并发执行的任务。
  2. JobMaster 会向资源管理器(ResourceManager)发出请求,申请执行任务必要的资源。一旦它获取到了足够的资源,就会将执行图分发到真正运行它们的TaskManager上。

而在运行过程中 , JobMaster 会负责所有需要中央协调的操作。

(2)资源管理器(ResourceManager)

ResourceManager 主要负责资源的分配和管理,在 Flink 集群中只有一个。所谓“资源”,主要是指 TaskManager 的任务槽(task slots)。任务槽就是 Flink 集群中的资源调配单元,包含了机器用来执行计算的一组 CPU 和内存资源。每一个任务(Task)都需要分配到一个slot上执行

(3)分发器(Dispatcher)

Dispatcher 主要负责提供一个 REST 接口,用来提交应用,并且负责为每一个新提交的作业启动一个新的 JobMaster 组件。Dispatcher 也会启动一个 Web UI,用来方便地展示和监控作业执行的信息。

2)任务管理器(TaskManager)

TaskManager 是 Flink 中的工作进程,数据流的具体计算就是它来做的。Flink集群中必须至少有一个TaskManager;每一个 TaskManager 都包含了一定数量的任务槽(taskslots)。Slot 是资源调度的最小单位,slot 的数量限制了 TaskManager 能够并行处理的任务数量。

启动之后,TaskManager 会向资源管理器注册它的 slots;收到资源管理器的指令后,TaskManager 就会将一个或者多个槽位提供给 JobMaster 调用,JobMaster 就可以分配任务来执行了。 在执行过程中,TaskManager 可以缓冲数据,还可以跟其他运行同一应用的TaskManager交换数据。

核心概念

1)并行度(Parallelism)

(1)并行子任务和并行度

image-20231104112830661

Flink 执行过程中,每一个算子(operator)可以包含一个或多个子任务(operatorsubtask),这些子任务在不同的线程、不同的物理机或不同的容器中完全独立地执行。

一个特定算子的子任务(subtask)的个数被称之为其并行度(parallelism)。包含并行子任务的数据流,就是并行数据流

一个流程序的 并行度,可以认为就是其 所有算子中最大的并行度

上图数据流中有 source、map、window、sink 四个算子,其中sink算子的并行度为 1,其他算子的并行度都为 2。所以这段流处理程序的并行度就是2。

(2)并行度的设置

在 Flink 中,可以用不同的方法来设置并行度,它们的有效范围和优先级别也是不同的。

  • 直接代码设置

代码中在算子后跟着调用 setParallelism()方法,来设置当前算子的并行度:

stream.map(word -> Tuple2.of(word, 1L)).setParallelism(2);

调用执行环境的 setParallelism()方法,全局设定并行度:

env.setParallelism(2);

这样代码中所有算子,默认的并行度就都为 2 。

调试可以使用本地环境,自带Web UI便于调试(默认8081端口):

需要添加如下依赖:

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-runtime-web</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>

注意:keyBy 不是算子,所以无法对 keyBy 设置并行度。

  • 提交应用时设置

-p 参数来指定当前应用程序执行的并行度,它的作用类似于执行环境的全局设置:

bin/flink run -m 192.168.197.130:8081 -p 2 -c com.lkl.StreamSocketWordCount ../day5-flink-1.0-SNAPSHOT.jar

在 Web UI 上提交作业,也可以在对应输入框中直接添加并行度。

image-20231104123336659

  • 配置文件中设置

直接在集群的配置文件 flink-conf.yaml 中直接更改默认并行度:

parallelism.default: 2

初始值为1。

在没有指定并行度的时候,就会采用配置文件中的集群默认并行度。在开发环境中,没有配置文件,默认并行度就是当前机器的CPU核心数

并行度设置优先级

代码:算子 > 代码:env > 提交时指定 > 配置文件

2)算子链(Operator Chain)

(1)算子间的数据传输

image-20231104151241512

一个数据流在算子之间传输数据的形式可以是一对一(one-to-one)直通(forwarding)模式,也可以是打乱重分区(redistributing)模式,具体是哪一种形式,取决于算子的种类。

1. 一对一(One-to-one,forwarding)

图中的source 和map算子,source 算子读取数据之后,可以直接发送给 map 算子做处理,它们之间不需要重新分区,也不需要调整数据的顺序。map 算子的子任务,看到的元素个数和顺序跟source算子的子任务产生的完全一样,保证着“一对一”的关系。map、filter、flatMap等算子都是这种one-to-one的对应关系。这种关系类似于 Spark 中的窄依赖

2. 重分区(Redistributing)

这种模式,数据流的分区会发生改变。比如图中的map和后面的keyBy/window算子之间,以及 keyBy/window 算子和 Sink 算子之间,都是这样的关系。

每一个算子的子任务,会根据数据传输的策略,把数据发送到不同的下游目标任务。这些传输方式都会引起重分区的过程,这一过程类似于 Spark 中的shuffle

(2)合并算子链

并行度相同的一对一(one to one)算子操作,可以直接链接在一起形成一个“大”的任务(task),这样原来的算子就成为了真正任务里的一部分,如下图所示。每个task 会被一个线程执行。这样的技术被称为“算子链”(Operator Chain)

image-20231104152204398

将算子链接成 task 是非常有效的优化:可以减少线程之间的切换和基于缓存区的数据交换,在减少时延的同时提升吞吐量

Flink 默认会按照算子链的原则进行链接合并,如果想要禁止合并或者自行定义,也可以在代码中对算子做一些特定的设置:

// 禁用算子链
.map(word -> Tuple2.of(word, 1L)).disableChaining();
// 从当前算子开始新链
.map(word -> Tuple2.of(word, 1L)).startNewChain()

禁用算子链,当前算子与前后算子都不能组成算子链。(一般不会禁用)

3)任务槽(Task Slots)

(1)任务槽(Task Slots)

Flink 中每一个 TaskManager 都是一个 JVM 进程,它可以启动多个独立的线程,来并行执行多个子任务(subtask)。

TaskManager 的计算资源是有限的,并行的任务越多,每个线程的资源就会越少。

为了控制并发量,需要在TaskManager 上对每个任务运行所占用的资源做出明确的划分,这就是所谓的任务槽(taskslots)

每个任务槽(task slot)其实表示了 TaskManager 拥有计算资源的一个固定大小的子集。这些资源就是用来独立执行一个子任务的。

独立内存不独立CPU(时间片轮转)

image-20231104153353299

(2)任务槽数量的设置

在 Flink 的 flink-conf.yaml 配置文件中,可以设置TaskManager 的 slot 数量,默认是 1 个 slot。

taskmanager.numberOfTaskSlots: 8

slot 目前仅仅用来隔离内存,不会涉及 CPU 的隔离。在具体应用时,可以将 slot 数量配置为机器的 CPU 核心数,尽量避免不同任务之间对CPU的竞争。

(3)任务对任务槽的共享

同一个作业中,不同任务节点(算子)的并行子任务,就可以放到同一个slot上执行。

image-20231104153855330

对于第一个任务节点source→map,它的 6 个并行子任务必须分到不同的 slot 上,而第二个任务节点keyBy/window/apply的并行子任务却可以和第一个任务节点共享 slot。

将资源密集型和非密集型的任务同时放到一个 slot 中,它们就可以自行分配对资源占用的比例,从而保证最重的活平均分配给所有的 TaskManager

slot 共享另一个好处就是允许保存完整的作业管道。即使某个TaskManager 出现故障宕机,其他节点也可以完全不受影响,作业的任务可以继续执行。

Flink 默认是允许 slot 共享的,如果希望某个算子对应的任务完全独占一个slot,或者只有某一部分算子共享 slot,也可以通过设置“slot 共享组”手动指定:(默认都是default)

.map(word -> Tuple2.of(word, 1L)).slotSharingGroup("aaa");

只有属于同一个 slot 共享组的子任务,才会开启 slot 共享;不同组之间的任务是完全隔离的,必须分配到不同的 slot 上

4)任务槽和并行度的关系

任务槽是静态的概念 , 是指 TaskManager 具有的并发执行能力,可以通过参数taskmanager.numberOfTaskSlots 进行配置;而并行度是动态概念,也就是TaskManager 运行程序时实际使用的并发能力,可以通过参数 parallelism.default 进行配置。

注意

slot数量 >= job并行度(算子最大并行度),job才能运行【否则无法提交任务】

如果是yarn模式,动态申请

​ 申请TM数量 = job并行度 / 每个TM的slot数,向上取整

​ 例如session模式,刚开始0个TaskMananger(设置为3个slot),0个slot

​ 此时,提交一个job并行度为10

​ 10 / 3 向上取整,申请4个TM,使用10个slot,还剩余2个slot

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1171501.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

广告引擎检索技术快速学习

目录 一、广告系统与广告引擎介绍 &#xff08;一&#xff09;广告系统与广告粗分 &#xff08;二&#xff09;广告引擎在广告系统中的重要性分析 二、广告引擎整体架构和工作过程 &#xff08;一&#xff09;一般概述 &#xff08;二&#xff09;核心功能架构图 三、标…

数字IC后端实现 |TSMC 12nm 与TSMC 28nm Metal Stack的区别

下图为咱们社区IC后端训练营项目用到的Metal Stack。 芯片Tapeout Review CheckList 数字IC后端零基础入门Innovus学习教程 1P代表一层poly&#xff0c;10M代表有10层metal&#xff0c;M5x表示M2-M6为一倍最小线宽宽度的金属层&#xff0c;2y表示M7-M8为二倍最小线宽宽度的金…

C++笔记之lambda捕获列表中的‘this‘指针

C笔记之lambda捕获列表中的’this’指针 code review! 捕获this指针的lambda表达式在C中有多种应用场景。以下是一些示例&#xff1a; 异步编程&#xff1a;当您需要在异步操作中访问类的成员变量或成员函数时&#xff0c;可以使用捕获this指针的lambda表达式。例如&#xf…

【高性能网络协议栈】openonload 篇

Onload 是 Solarflare 公司开发的加速的网络中间件。它在用户空间实现了 TCP/IP 网络协议栈&#xff0c;能在用户空间直接访问&#xff08;安全的&#xff09;网络适配器硬件访问权限硬件。网络数据可以直接在网络和应用之间收发&#xff0c;而不必通过操作系统&#xff0c;这种…

【蓝桥杯选拔赛真题10】C++求奇数和 青少年组蓝桥杯C++选拔赛真题 STEMA比赛真题解析

目录 C/C++求奇数和 一、题目要求 1、编程实现 2、输入输出 二、算法分析 <

第10届集美大学校赛(F,H)

两个有些难度的dp 中文题面&#xff0c;题意略 F 时间超限 II 一开始的思路想复杂了&#xff0c;想成了多重集的组合数学&#xff0c;二进制枚举肯定不行&#xff0c;dp也想的很复杂还错估时间复杂度。 补题的时候被题解的方法折磨好久&#xff0c;太抽象了。 这是官方题解…

tbh着色

在tbh中&#xff0c;着色之前&#xff0c;首先可以可以创建多个色板&#xff0c;如果不同角色颜色不一样&#xff0c;就可以创建多个色板&#xff0c;每一个色板代表的角色不同。 1、创建色板 有两种方式&#xff1a; 方法一&#xff1a;在颜色菜单中&#xff0c;点击左上角 …

2023年【山东省安全员C证】考试内容及山东省安全员C证复审考试

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 山东省安全员C证考试内容是安全生产模拟考试一点通总题库中生成的一套山东省安全员C证复审考试&#xff0c;安全生产模拟考试一点通上山东省安全员C证作业手机同步练习。2023年【山东省安全员C证】考试内容及山东省安…

『精』Vue 组件如何模块化抽离Props

『精』Vue 组件如何模块化抽离Props 文章目录 『精』Vue 组件如何模块化抽离Props一、为什么要抽离Props二、选项式API方式抽离三、组合式API方式抽离3.1 TypeScript类型方式3.2 文件分离方式3.3 对文件分离方式优化 参考资料&#x1f498;推荐博文&#x1f357; 一、为什么要抽…

串口代码整合2-如何接收数据?

本文为博主 日月同辉&#xff0c;与我共生&#xff0c;csdn原创首发。希望看完后能对你有所帮助&#xff0c;不足之处请指正&#xff01;一起交流学习&#xff0c;共同进步&#xff01; > 发布人&#xff1a;日月同辉,与我共生_单片机-CSDN博客 > 欢迎你为独创博主日月同…

力扣刷题-二叉树-二叉树的非递归遍历

参考&#xff1a;https://www.programmercarl.com/%E4%BA%8C%E5%8F%89%E6%A0%91%E7%9A%84%E8%BF%AD%E4%BB%A3%E9%81%8D%E5%8E%86.html#%E6%80%9D%E8%B7%AF 思路 为什么可以用迭代法&#xff08;非递归的方式&#xff09;来实现二叉树的前后中序遍历呢&#xff1f; 我们在栈与…

ruo-yi项目部署 前后端分离

nginx服务器部署java服务器部署db服务器部署配置打包环境配置前端打包环境&#xff08;java服务器&#xff09;配置后端打包环境获取代码 前端代码打包后端代码打包项目上线前端项目上线后端项目上线 将jar包传送到后端服务器导入初始化数据 ip主机名服务名称192.168.20.138ngi…

BEV-YOLO 论文学习

1. 解决了什么问题&#xff1f; 出于安全和导航的目的&#xff0c;自驾感知系统需要全面而迅速地理解周围的环境。目前主流的研究方向有两个&#xff1a;第一种传感器融合方案整合激光雷达、相机和毫米波雷达&#xff0c;和第二种纯视觉方案。传感器融合方案的感知表现鲁棒&am…

【Linux】:重定向和用户缓冲区

重定向和用户缓冲区 一.输出重定向1.现象2.系统调用接口 二.缓冲区1.引子2.刷新 三.回答引例 文件描述符对应匹配规则&#xff1a;从0下标开始&#xff0c;寻找最小的没有被使用的数组位置&#xff0c;它就是新的文件描述符(fd)。 一.输出重定向 1.现象 在这里我们向1号文件内…

【CSS】div 盒子居中的常用方法

<body><div class"main"><div class"box"></div></div> </body>绝对定位加 margin: auto; &#xff1a; <style>* {padding: 0;margin: 0;}.main {width: 400px;height: 400px;border: 2px solid #000;positio…

YOLOv8在前代的基础上有哪些改进?

YOLO系列又双叒更新&#xff01; 只能说&#xff0c;YOLO系列发展地真快&#xff0c;已经有点跟不上了&#xff01; YOLOv1-YOLOv8系列回顾 YOLOv1&#xff1a;2015年Joseph Redmon和Ali Farhadi等人&#xff08;华盛顿大学&#xff09; YOLOv2&#xff1a;2016年Joseph Re…

使用seldom编写http接口用例

在编写接口用例的过程中&#xff0c;针对一个接口&#xff0c;往往只是参数不同&#xff0c;那么参数化就非常有必要了。 seldom 中参数化的用法非常灵活&#xff0c;这里仅介绍file_data() 的N种玩法。 二维列表 当参数比较简单时可以试试下面的方式。 参数化数据 {"…

qt6-QPushButton无法显示为类

问题 在编写QT程序时&#xff0c;不同颜色表示不同的含义。在设计基本的界面&#xff0c;需要使用QRadioButton时&#xff0c;相应的字符为紫色&#xff0c;紫色为类名。这篇简单说明了下&#xff0c;也可以鼠标点击页面&#xff0c;可以出现提示。 但是上面图片中显示&#…

linux中if条件判断,case...esac,function学习

第一、 if [ 判断式 ] ; then fi 注意&#xff1a;中括号和判断式之间的空格&#xff0c;否则会报错&#xff0c;上案例 第二个图的12行&#xff0c;中括号和条件判断如果没有空格&#xff0c;则会提示缺号‘】’&#xff0c;如第二个图最上面的提示。所以使用中括号的格式…

C/C++ static关键字详解(最全解析,static是什么,static如何使用,static的常考面试题)

目录 一、前言 二、static关键字是什么&#xff1f; 三、static关键字修饰的对象是什么&#xff1f; 四、C 语言中的 static &#x1f34e;static的C用法 &#x1f349;static的重点概念 &#x1f350;static修饰局部变量 &#x1f4a6;static在修饰局部变量和函数的作用 &a…