【深度学习基础】Pytorch框架CV开发(1)基础铺垫

news2024/11/27 6:11:25

📢:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨
📢:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】
📢:文章若有幸对你有帮助,可点赞 👍 收藏 ⭐不迷路🙉
📢:内容若有错误,敬请留言 📝指正!原创文,转载请注明出处

文章目录

  • 简单介绍下Pytorch
  • Pytorch基础
    • 张量
    • 创建张量tensor
    • 自动梯度
    • 线性回归
    • 逻辑回归
    • 人工神经网络
    • 感知机
    • 反向传播
  • Pytorch中的基础数据集

简单介绍下Pytorch

深度学习框架的作用:通过深度学习框架搭建神经网络;

什么是Pytorch?:Pytorch是Facebook的AI研究团队开发,以python优先的深度学习框架。

tensor的作用:tensor是Pytorch中最基本的构建,能够像Numpy一样进行矩阵运算,同时支持GPU加速。亦可以与Numpy相互转换。

tensor学习的重点:重点是tensor的操作和数学运算,难点是variable和自动求导。

tourch包括两种操作
1.数学运算,这个跟python中的数学运算一致。
2.高级操作

导入Pytorch的方法:import torch

Pytorch基础

张量

什么是张量:Pytorch中任何数据都是张量,分为一维和多维张量,其中三维张量就是图像。

在这里插入图片描述

创建张量tensor

创建空张量:a=torch.empty(2,3)或是a=torch.zeros(2,3)
创建随机张量:a=torch.random(3,3) 创建自定义张量: a=torch.tensor([1,2,3,2,4,4])#一维
a=torch.tensor([[1,2,3],[2,4,4]])#二维

张量算术运算:规则跟数组一样,相±,形状必须一样;*/要求参考数组的表达。 例如: C=a.add(b)
xy=torch.matmul(x,y)

张量形状变换:使用view函数,张量名2=张量名1.view(新形状) 查看张量形状:张量名.size() 张量与数组之间的数据转换:
张量转成数组:数组名=张量名.Numpy() 数组转成张量:张量名=torch.from_Numpy(数组名)

张量可以理解为矩阵。 张量里面的review跟数组内的reshape一样。 matmul翻译为矩阵相乘

自动梯度

什么是自动梯度:就是自动求偏导数,计算梯度就是计算偏导数。

在这里插入图片描述

如何计算梯度:使用函数backward()
例如:
在这里插入图片描述
输出结果的作用:帮助调整输入,也就是深度学习的目的。最终得到一个正确的预测模型。
计算梯度就是反向计算,也就是求导。

线性回归

什么是线性回归?线性规划根据输入的数据拟合曲线。通过一堆点生成一条直线,这条直线符合y=kx+b这样的一元一次函数。采用的方法(拟合方式)是最小二乘法,也就是每个点的纵坐标(真实值)与线上的预测值之间的误差和最小。
在这里插入图片描述

Pytorch中如何求线性回归?使用函数:torch.nn.liner(input,output)
其中的输入是x,输出是y。
如何计算真实值与预测值之间的误差?
公式:
在这里插入图片描述
使用的函数:torch.nn.MSELoss

更新参数(k和d)的方法:参数=参数-学习率*参数梯度
计算损失值不断循环往复,直到这个损失值到最小值才停止更新。

上述不断更新参数的过程在Pytorch中如何实现?
使用下面的函数即可。使用SGD优化器不断拟合参数
在这里插入图片描述
如何构建正确的线性回归模型?
1.构建初始模型
2.计算损失
3.更新参数(模型训练)
数据+模型+损失+优化

通过一堆点生成一条直线,这个过程叫做拟合。
线性回归的过程就是找到合适的k和b,使得真实值与预测值的差值(损失值)最小。

逻辑回归

什么是逻辑回归?在线性组合的基础上加上非线性变换。

在这里插入图片描述
在这里插入图片描述
逻辑回归在理解了线性回归的基础上,理解起来比较简单,其实是对线性的情况进行复杂化,因为实际情况中的很多关系不是线性的。

人工神经网络

人工神经网络的出现:线性回归是预先知道y-x之间的关系的,而实际上很多时候是不知道两者之间的关系,就是说y-x很可能不是线性的,甚至数据量是否庞大,这个时候人工神经网络出现了,可以帮助构建y-x之间的模型关系。人工神经网络本意是为了模仿人的大脑神经网络,希望做到像人脑一样思考,因此提出了人工神经网络这个概念。

人工神经网络发展历史
在这里插入图片描述

感知机

感知机的出现:线性回归都是单个变量之间的关系,为应对更为复杂的实际问题,出现了感知机这一概念,感知机的输入有多个x,输出y由多个线性回归组合而成,是一个多元一次函数。所求出的y为和,通过激活函数的操作,判断是否将其激活。这个就是比逻辑回归更加复杂点,多增加了输入量。
感知机也是在模仿神经网络,其中的结点就是神经元。
在这里插入图片描述

反向传播

反向传播算法的两个阶段:前向传播阶段和反向传播阶段。
前向传播的作用:从输入层到隐藏层到输出层这一个过程,输出预测值,计算预测值跟标签值之间的差值。
反向传播的作用:差值从输出层反向传播给输入层,若差值过大就会重新计算参数,进行优化。优化后的参数再一次进行前向传播,如此往复循环,最终输出最小差值,停止参数更新。也说明预测值越来越接近真实值。
反向传播算法的分类:静态反向传播;循环反向传播。
在这里插入图片描述
反向传播的数学原理:自动梯度求导(遵循链式求导法则)
在这里插入图片描述
E是损失误差,net是输入值,o是输入值经过激活函数后的输出值。
E对wi求出的导数越大说明对E的贡献越大,可以通过减小w值来实现E的缩小,得到新的wi值,新的值重新进行训练,得到新的E值,通过判断E的大小考虑是否再进行上述的轮回,直至最小(也就是训练结束)。

反向传播举例:
在这里插入图片描述

反向传播的训练方法
1.随机/世故梯度下降:计算梯度基于单个样本,计算速度快,很容易收敛。 每个样本都要下降一次。
2.标准/批量梯度下降:计算基于整个数据集,计算速度慢,不容易收敛。 整个样本全部计算完后下降一次。
3.mini_batch梯度下降:而实际训练中都不采用上述两种方法,而采用小批量梯度下降,也就是batch_size的值,这个值要根据显卡的内存去设置。 优点是:收敛速度快,算法精度高。
在这里插入图片描述
线性组合加上非线性变换就是感知机。
总结:前向传播用于产生错误;反向传播用于更新参数

Pytorch中的基础数据集

Pytoch内置数据集:Pytorch内置需要经典的数据集,可以直接拿来使用。
在这里插入图片描述
数据集的读取和加载:dataset用于读取数据集;dataloader用于加载数据集。
在这里插入图片描述
dataset也就是封装好了许多经典的数据集,我们没必要去网上下载了,存储在torchvision这个模块里面。在Pytorch里直接使用dataloader就可以下载了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1170407.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

BEM:css命名规范

BEM BEM(Block-Element-Modifier),块、元素、修饰符,是一种CSS命名规范,旨在前端开发中创建可重用组件和代码共享的方法,使样式易于扩展,易于维护,易于理解 规范: 1、块(Block&am…

Python|Pyppeteer获取威科先行文章链接(21)

前言 本文是该专栏的第21篇,结合优质项目案例持续分享Pyppeteer的干货知识,记得关注。 本文以“威科先行”的信息库为例,笔者将详细介绍使用pyppeteer“自动滑动页面并翻页”获取威科先行的文章链接。如果对pyppeteer的使用以及知识点不太熟悉的同学,可往前查看本专栏前面…

(参考写法)Transformer-Based Visual Segmentation:A Survey

基于Transformer的视觉分割综述 南洋理工大学NTU、上海人工智能实验室AI Lab整理300+论文 论文地址:https://arxiv.org/pdf/2304.09854.pdf 代码地址:https://github.com/lxtGH/Awesome-Segmentation-With-Transformer 前言 SAM (Segment Anything )作为一个视觉的分割…

python创建一个简单的flask应用

下面用python在本地和服务器上分别创建一个简单的flask应用: 1.在pc本地 1)pip flask后创建一个简单的脚本flask_demo.py from flask import Flaskapp Flask(__name__)app.route(/) def hello_world():return Hello, World!winR进入命令行,…

https网站加载http资源问题

https网站加载http资源问题 前言:最近项目对接了一个第三方的平台、我们需要展示第三方平台返回来的图片资源、由于我们的服务器设置为了https、但是第三方平台返回的图片链接是 http 资源。所以就出现了图片无法加载出来的问题,在此记录一下问题的解决…

数据结构与算法(Java版) | 排序算法的介绍与分类

各位朋友,现在我们即将要进入数据结构与算法(Java版)这一系列教程中的排序算法这一章节内容的学习中了,所以还请大家系好安全带,跟随我准备出发吧! 相信诸位应该都知道排序算法有很多种吧!就算没…

旋转链表(C++解法)

题目 给你一个链表的头节点 head ,旋转链表,将链表每个节点向右移动 k 个位置。 示例 1: 输入:head [1,2,3,4,5], k 2 输出:[4,5,1,2,3]示例 2: 输入:head [0,1,2], k 4 输出:[…

服务号可以转订阅号吗

服务号和订阅号有什么区别?服务号转为订阅号有哪些作用?首先我们要看一下服务号和订阅号的主要区别。1、服务号推送的消息没有折叠,消息出现在聊天列表中,会像收到消息一样有提醒。而订阅号推送的消息是折叠的,“订阅号…

软文成功三大要素,媒介盒子分享

今天媒介盒子来和大家分享:软文成功的三大要素。 许多企业在进行软文推广时经常会很困惑,明明软文写了也发了,怎么就是没效果,其实是忽略了这三点: 一、 创意性 创意可以是文案的语言风格、看问题的视角、排版等等&…

服务器开设新账户,创建账号并设置密码

实验室又进新同学了,服务器开设新账号搞起来 1、创建用户: 在root权限下,输入命令useradd -m 用户名,如下 sudo useradd -m yonghuming 2、设置密码: 输入命令passwd 用户名 回车,接着输入密码操作&…

SPSS两独立样本的非参数检验

前言: 本专栏参考教材为《SPSS22.0从入门到精通》,由于软件版本原因,部分内容有所改变,为适应软件版本的变化,特此创作此专栏便于大家学习。本专栏使用软件为:SPSS25.0 本专栏所有的数据文件请点击此链接下…

Yolov8改进CoTAttention注意力机制,效果秒杀CBAM、SE

1.CoTAttention 论文地址:2107.12292.pdf (arxiv.org) CoTAttention网络是一种用于多模态场景下的视觉问答(Visual Question Answering,VQA)任务的神经网络模型。它是在经典的注意力机制(Attention Mechanism&#xf…

C++ 算法:区间和的个数

涉及知识点 归并排序 题目 给你一个整数数组 nums 以及两个整数 lower 和 upper 。求数组中,值位于范围 [lower, upper] (包含 lower 和 upper)之内的 区间和的个数 。 区间和 S(i, j) 表示在 nums 中,位置从 i 到 j 的元素之和…

多技术融合提升环境、生态、水文、土地、农业、大气等领域科研技术水平

专题一、空间数据获取与制图 1.1 软件安装与应用讲解 1.2 空间数据介绍 1.3海量空间数据下载 1.4 ArcGIS软件快速入门 1.5 Geodatabase地理数据库 点击查看原文链接https://mp.weixin.qq.com/s?__bizMzg2NDYxNjMyNA&mid2247546998&idx6&sn39342c376b158eff1…

基于SSM的购物商城网站的设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…

多测师肖sir_高级金牌讲师__adb命令

adb指令整理: ADB常用的指令: 查看当前连接设备 : adb devices 进入到shell : adb shell 查看日志 : adb logcat 安装apk文件 : adb install xxx.apk 卸载APP : adb uninstall 包名 查看包名 &…

Cadence Virtuoso如何保存spectre仿真在cell view里

Launch ADE L 可以选择 Load State 加载上次仿真状态,但是我想保存在cell view和schematic在一起可以直接打开,可以选择Save State旁的Cellview 可以在Library Manager中看到保存成功了

YOLOv5项目实战(2)— 手把手教你租借云服务器去训练模型

前言:Hello大家好,我是小哥谈。近期由于出差在外(在新疆吐鲁番出差呢~),一直远程使用公司服务器进行算法模型训练,但是由于这几天公司VPN故障,导致无法远程训练模型,所以就想着租借服务器来进行训练。近期我研发的算法模型是工业场景烟雾明火检测,本节课就以此为例教大…

AI 引擎系列 4 - 首次运行 AI 引擎编译器和 x86simulator(2022.1 更新)

AI 引擎系列 4 - 首次运行 AI 引擎编译器和 x86simulator(2022.1 更新) 简介 在 AI 引擎系列的前 3 篇博文中,我们探讨了 AI 引擎应用所需的不同文件。在本篇中,我们将为 X86 目标运行 AI 引擎编译器,观察它生成的不…

YOLO目标检测——昏暗车辆检测数据集【含对应voc、coco和yolo三种格式标签】

实际项目应用:智能交通监控系统、驾驶辅助系统、城市安全监控、自动驾驶系统以及路况分析与规划等数据集说明:昏暗车辆检测数据集,真实场景的高质量图片数据,数据场景丰富,含有图片汽车、卡车、公共汽车标签说明&#…