mysql 中!= 到底走不走索引?
很多人疑惑!= 到底走不走索引, 这里可以肯定的说该操作是可以走索引的,但实际情况中都为啥都不走索引呢? 首先我们要知道走索引与数据量和数据趋势(cardinality)有很大的关系,如果表本身就上百条记录,那走索引和表扫描区别不大,甚至在存在书签跳转情况下还不如表扫描更有效率,这个时候可能是不走索引的,另外 !=操作后获取的结果集在总结果集中占据的比例也是关键因素,如果返回的结果集过大(大于20%),那么可能也不会走索引,而是选择更有效率的表扫描了。
我们来看看个例子:
CREATE TABLE `b` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`age` bigint(20) DEFAULT 50,
`name` varchar(50) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `name` (`name`)
) ENGINE=InnoDB
insert into b (name) values('a'),('b'),('c'),('d'),('e'),('f'),('g'),('h'),('i');
--多次执行
insert into b (name)
select 'k' from b ;
select name, count(*)
from b
group by name
explain
select * From b where name !='k';
explain
select * From b where name !='a';
很明显 我们从统计中看到 K的数值很大,所以我们!='k'的数据集才8条,在总数据中占比很小,可以很好的走索引,而如果将k替换成 a,则不会走索引,变成了全表扫描
MYSQL系列书籍
高可用mysql: https://url41.ctfile.com/f/49289241-959127723-de4738?p=2651 (访问密码: 2651)
MySQL王者晋级之路.pdf: https://url41.ctfile.com/f/49289241-959127432-204284?p=2651 (访问密码: 2651)
MySQL技术内幕InnoDB存储引擎第2版.pdf: https://url41.ctfile.com/f/49289241-959126379-4590a8?p=2651 (访问密码: 2651)
MySQL技术内幕 第4版.pdf: https://url41.ctfile.com/f/49289241-959125506-a5bcec?p=2651 (访问密码: 2651)
MySQL管理之道,性能调优,高可用与监控(第二版).pdf: https://url41.ctfile.com/f/49289241-959124249-d59f54?p=2651 (访问密码: 2651)
深入浅出MySQL数据库开发、优化与管理维护第2版.pdf: https://url41.ctfile.com/f/49289241-961464090-68bf10?p=2651 (访问密码: 2651)
高性能MySQL.第3版.Baron Schwartz.pdf: https://url41.ctfile.com/f/49289241-961462308-52cc5d?p=2651 (访问密码: 2651)
MYSQL内核:INNODB存储引擎 卷1.pdf: https://url41.ctfile.com/f/49289241-961461357-ee63e3?p=2651 (访问密码: 2651)
MySQL技术内幕InnoDB存储引擎第2版.pdf: https://url41.ctfile.com/f/49289241-959126379-4590a8?p=2651 (访问密码: 2651)
MySQLDBA修炼之道.pdf: https://url41.ctfile.com/f/49289241-961459500-9b201d?p=2651 (访问密码: 2651)
MySQL5.7从入门到精通.pdf: https://url41.ctfile.com/f/49289241-961459329-48cbcf?p=2651 (访问密码: 2651)
高可用mysql.pdf: https://url41.ctfile.com/f/49289241-959127723-de4738?p=2651 (访问密码: 2651)
HIVE电子书
Practical Hive.pdf: https://url41.ctfile.com/f/49289241-959129883-d35ee9?p=2651 (访问密码: 2651)
Hive-Succinctly.pdf: https://url41.ctfile.com/f/49289241-959129709-30f30b?p=2651 (访问密码: 2651)
Apache Hive Essentials.pdf: https://url41.ctfile.com/f/49289241-959129691-b1a4aa?p=2651 (访问密码: 2651)
Apache Hive Cookbook.pdf: https://url41.ctfile.com/f/49289241-959129619-3a8ea6?p=2651 (访问密码: 2651)
hadoop电子书
Practical Hadoop Migration.pdf: https://url41.ctfile.com/f/49289241-959131470-dd3e24?p=2651 (访问密码: 2651)
Hadoop实战-陆嘉恒(高清完整版).pdf: https://url41.ctfile.com/f/49289241-959131365-433ec9?p=2651 (访问密码: 2651)
Hadoop & Spark大数据开发实战.pdf: https://url41.ctfile.com/f/49289241-959131032-ba40ea?p=2651 (访问密码: 2651)
Expert Hadoop Administration.pdf: https://url41.ctfile.com/f/49289241-959130468-ba70cd?p=2651 (访问密码: 2651)
Big Data Forensics - Learning Hadoop Investigations.pdf: https://url41.ctfile.com/f/49289241-959130435-9ab981?p=2651 (访问密码: 2651)
python电子书
python学习手册.pdf: https://url41.ctfile.com/f/49289241-959129403-5b45b1?p=2651 (访问密码: 2651)
Python基础教程-第3版.pdf: https://url41.ctfile.com/f/49289241-959128707-de6ef2?p=2651 (访问密码: 2651)
Python编程:从入门到实践.pdf: https://url41.ctfile.com/f/49289241-959128548-ce965d?p=2651 (访问密码: 2651)
Python Projects for Beginners.pdf: https://url41.ctfile.com/f/49289241-959128461-b53321?p=2651 (访问密码: 2651)
kafka电子书
Learning Apache Kafka, 2nd Edition.pdf: https://url41.ctfile.com/f/49289241-959134953-a14305?p=2651 (访问密码: 2651)
Kafka权威指南.pdf: https://url41.ctfile.com/f/49289241-959134932-295734?p=2651 (访问密码: 2651)
Kafka in Action.pdf: https://url41.ctfile.com/f/49289241-959134116-12111a?p=2651 (访问密码: 2651)
Apache Kafka实战.pdf: https://url41.ctfile.com/f/49289241-959133999-76ef77?p=2651 (访问密码: 2651)
Apache Kafka Cookbook.pdf: https://url41.ctfile.com/f/49289241-959132547-055c36?p=2651 (访问密码: 2651)
spark电子书
Spark最佳实践.pdf: https://url41.ctfile.com/f/49289241-959415393-5829fe?p=2651 (访问密码: 2651)
数据算法--Hadoop-Spark大数据处理技巧.pdf: https://url41.ctfile.com/f/49289241-959415927-5bdddc?p=2651 (访问密码: 2651)
Spark大数据分析实战.pdf: https://url41.ctfile.com/f/49289241-959416377-924161?p=2651 (访问密码: 2651)
Spark 2.0 for Beginners.pdf: https://url41.ctfile.com/f/49289241-959416710-7ea156?p=2651 (访问密码: 2651)
Pro Spark Streaming.pdf: https://url41.ctfile.com/f/49289241-959416866-6116d7?p=2651 (访问密码: 2651)
Spark in Action.pdf: https://url41.ctfile.com/f/49289241-959416986-e759e9?p=2651 (访问密码: 2651)
Learn PySpark.pdf: https://url41.ctfile.com/f/49289241-959417049-ac04a0?p=2651 (访问密码: 2651)
Fast Data Processing with Spark.pdf: https://url41.ctfile.com/f/49289241-959417157-8ec3b0?p=2651 (访问密码: 2651)
Fast Data Processing with Spark, 2nd Edition.pdf: https://url41.ctfile.com/f/49289241-959417211-856d08?p=2651 (访问密码: 2651)
OReilly.Learning.Spark.2015.1.pdf: https://url41.ctfile.com/f/49289241-959417292-90c1bc?p=2651 (访问密码: 2651)
High Performance Spark.pdf: https://url41.ctfile.com/f/49289241-959417439-7e7893?p=2651 (访问密码: 2651)
Machine Learning with PySpark.pdf: https://url41.ctfile.com/f/49289241-959417580-5941b3?p=2651 (访问密码: 2651)
Spark for Python Developers.pdf: https://url41.ctfile.com/f/49289241-959417721-d59fbe?p=2651 (访问密码: 2651)
Spark Cookbook.pdf: https://url41.ctfile.com/f/49289241-959417811-19c75d?p=2651 (访问密码: 2651)
Big Data Analytics with Spark.pdf: https://url41.ctfile.com/f/49289241-959417907-41dbce?p=2651 (访问密码: 2651)
PySpark SQL Recipes.pdf: https://url41.ctfile.com/f/49289241-959417970-c23242?p=2651 (访问密码: 2651)
Advanced Analytics with Spark Patterns for Learning from Data at Scale .pdf: https://url41.ctfile.com/f/49289241-959417997-a5e3f5?p=2651 (访问密码: 2651)
OReilly.Advanced.Analytics.with.Spark.Patterns.for.Learning.from.Data.at.Scale.pdf: https://url41.ctfile.com/f/49289241-959418024-2ff34c?p=2651 (访问密码: 2651)
Big Data Analytics Beyond Hadoop_ Real-Time Applications with Storm, Spark, and More Hadoop Alternatives.pdf: https://url41.ctfile.com/f/49289241-959418042-581fb9?p=2651 (访问密码: 2651)