代码随想录算法训练营第四十二天丨 动态规划part05

news2025/1/12 19:45:55

1049.最后一块石头的重量II

思路

本题其实就是尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小,这样就化解成01背包问题了

感觉和昨天讲解的416. 分割等和子集 (opens new window)非常像了。

本题物品的重量为 stones[i],物品的价值也为 stones[i]。

对应着01背包里的物品重量 weight[i]和 物品价值 value[i]。

接下来进行动规五步曲:

  • 确定dp数组以及下标的含义

dp[j]表示容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背最大重量为dp[j]

可以回忆一下01背包中,dp[j]的含义,容量为j的背包,最多可以装的价值为 dp[j]。

相对于 01背包,本题中,石头的重量是 stones[i],石头的价值也是 stones[i] ,可以 “最多可以装的价值为 dp[j]” == “最多可以背的重量为dp[j]”

  • 确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题则是:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);

一些同学可能看到这dp[j - stones[i]] + stones[i]中 又有- stones[i] 又有+stones[i],看着有点晕乎。

大家可以再去看 dp[j]的含义。

  • dp数组如何初始化

既然 dp[j]中的j表示容量,那么最大容量(重量)是多少呢,就是所有石头的重量和。

因为提示中给出1 <= stones.length <= 30,1 <= stones[i] <= 1000,所以最大重量就是30 * 1000 

而我们要求的target其实只是最大重量的一半,所以dp数组开到15000大小就可以了。

当然也可以把石头遍历一遍,计算出石头总重量 然后除2,得到dp数组的大小。

我这里就直接用15000了。

接下来就是如何初始化dp[j]呢,因为重量都不会是负数,所以dp[j]都初始化为0就可以了,这样在递归公式dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);中 dp[j]才不会初始值所覆盖。

代码为:

int[] dp = new int[target+1];
  • 确定遍历顺序

在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中就已经说明:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

代码如下:

for (int i = 0; i < stones.size(); i++) { // 遍历物品
    for (int j = target; j >= stones[i]; j--) { // 遍历背包
        dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
    }
}

  • 举例推导dp数组

举例,输入:[2,4,1,1],此时target = (2 + 4 + 1 + 1)/2 = 4 ,dp数组状态图如下:

1049.最后一块石头的重量II

最后dp[target]里是容量为target的背包所能背的最大重量。

那么分成两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target]。

在计算target的时候,target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的

那么相撞之后剩下的最小石头重量就是 (sum - dp[target]) - dp[target]。

代码如下:

class Solution {
    public int lastStoneWeightII(int[] stones) {
        //确定dp数组及其下标含义
        //dp数组将石头堆分成两堆,使两堆的
        int sum = 0;
        for (int i = 0; i < stones.length; i++) {
            sum += stones[i];
        }
        int target = sum / 2;
        int[] dp = new int[target+1];

        for (int i = 0; i < stones.length; i++) {
            for (int j = target; j >= stones[i]; j--) {
                dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);
            }
        }
        return sum - 2*dp[target];
    }
}

494.目标和

思路

这道题目咋眼一看和动态规划背包啥的也没啥关系。

本题要如何使表达式结果为target,

既然为target,那么就一定有 left组合 - right组合 = target。

left + right = sum,而sum是固定的。right = sum - left

公式来了, left - (sum - left) = target 推导出 left = (target + sum)/2 。

target是固定的,sum是固定的,left就可以求出来。

此时问题就是在集合nums中找出和为left的组合

动态规划

如何转化为01背包问题呢。

假设加法的总和为x,那么减法对应的总和就是sum - x。

所以我们要求的是 x - (sum - x) = target

x = (target + sum) / 2

此时问题就转化为,装满容量为x的背包,有几种方法

这里的x,就是bagSize,也就是我们后面要求的背包容量。

大家看到(target + sum) / 2 应该担心计算的过程中向下取整有没有影响。

这么担心就对了,例如sum 是5,S是2的话其实就是无解的,所以:

(C++代码中,输入的S 就是题目描述的 target)
if ((S + sum) % 2 == 1) return 0; // 此时没有方案

同时如果 S的绝对值已经大于sum,那么也是没有方案的。

(C++代码中,输入的S 就是题目描述的 target)
if (abs(S) > sum) return 0; // 此时没有方案

再回归到01背包问题,为什么是01背包呢?

因为每个物品(题目中的1)只用一次!

这次和之前遇到的背包问题不一样了,之前都是求容量为j的背包,最多能装多少。

本题则是装满有几种方法。其实这就是一个组合问题了。

  • 确定dp数组以及下标的含义

dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法

其实也可以使用二维dp数组来求解本题,dp[i][j]:使用 下标为[0, i]的nums[i]能够凑满j(包括j)这么大容量的包,有dp[i][j]种方法。

下面都是统一使用一维数组进行讲解, 二维降为一维(滚动数组),其实就是上一层拷贝下来,这个我在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)也有介绍。

  • 确定递推公式

有哪些来源可以推出dp[j]呢?

只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法。

例如:dp[j],j 为5,

  • 已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
  • 已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
  • 已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
  • 已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
  • 已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包

那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j - nums[i]] 累加起来。

所以求组合类问题的公式,都是类似这种:

dp[j] += dp[j - nums[i]]

这个公式在后面在讲解背包解决排列组合问题的时候还会用到!

  • dp数组如何初始化

从递推公式可以看出,在初始化的时候dp[0] 一定要初始化为1,因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递推结果将都是0。

这里有录友可能认为从dp数组定义来说 dp[0] 应该是0,也有录友认为dp[0]应该是1。

其实不要硬去解释它的含义,咱就把 dp[0]的情况带入本题看看应该等于多少。

如果数组[0] ,target = 0,那么 bagSize = (target + sum) / 2 = 0。 dp[0]也应该是1, 也就是说给数组里的元素 0 前面无论放加法还是减法,都是 1 种方法。

所以本题我们应该初始化 dp[0] 为 1。

可能有同学想了,那 如果是 数组[0,0,0,0,0] target = 0 呢。

其实 此时最终的dp[0] = 32,也就是这五个零 子集的所有组合情况,但此dp[0]非彼dp[0],dp[0]能算出32,其基础是因为dp[0] = 1 累加起来的。

dp[j]其他下标对应的数值也应该初始化为0,从递推公式也可以看出,dp[j]要保证是0的初始值,才能正确的由dp[j - nums[i]]推导出来。

  • 确定遍历顺序

在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲过对于01背包问题一维dp的遍历,nums放在外循环,target在内循环,且内循环倒序。

  • 举例推导dp数组

输入:nums: [1, 1, 1, 1, 1], S: 3

bagSize = (S + sum) / 2 = (3 + 5) / 2 = 4

dp数组状态变化如下:

代码如下:

class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int sum = 0;
        for (int i = 0; i < nums.length; i++) sum += nums[i];
	//如果target过大 sum将无法满足
        if ( target < 0 && sum < -target) return 0;
        if ((target + sum) % 2 != 0) return 0;
        int size = (target + sum) / 2;
        if(size < 0) size = -size;
        int[] dp = new int[size + 1];
        dp[0] = 1;
        for (int i = 0; i < nums.length; i++) {
            for (int j = size; j >= nums[i]; j--) {
                dp[j] += dp[j - nums[i]];
            }
        }
        return dp[size];
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1168471.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

linux环境下编译,安卓平台使用的luajit库

一、下载luajit源码 1、linux下直接下载&#xff1a; a、使用curl下载&#xff1a;https://luajit.org/download/LuaJIT-2.1.0-beta3.tar.gz b、git下载地址&#xff1b;https://github.com/LuaJIT/LuaJIT.git 2、Windows下载好zip文件&#xff0c;下载地址&#xff1a;https…

时空智友企业流程化管控系统文件存在任意文件上传漏洞

时空智友企业流程化管控系统文件存在任意文件上传漏洞 免责声明漏洞描述漏洞影响漏洞危害网络测绘Fofa: app"时空智友V10.1" 漏洞复现1. 构造poc2. 发送数据包&#xff0c;上传文件3. 访问webshellwebshell地址 免责声明 仅用于技术交流,目的是向相关安全人员展示漏…

​ iOS App Store上传项目报错 缺少隐私政策网址(URL)解决方法

一、问题如下图所示&#xff1a; ​ 二、解决办法&#xff1a;使用Google浏览器&#xff08;翻译成中文&#xff09;直接打开该网址 https://www.freeprivacypolicy.com/free-privacy-policy-generator.php 按照要求填写APP信息&#xff0c;最后将生成的网址复制粘贴到隐私…

公安涉密视频会议建设方案

公安涉密视频会议建设方案的制定需要考虑多方面因素。其一般是在复杂涉密网络环境中部署&#xff0c;怎样的内部保密部署方可保障涉密会议最大程度的加密进行呢&#xff1f;以下是从不同维度建设方案&#xff0c;可以根据实际应用场景进行相应的修改以及配置与之匹配的视频会议…

openGauss学习笔记-113 openGauss 数据库管理-设置安全策略-设置帐户安全策略

文章目录 openGauss学习笔记-113 openGauss 数据库管理-设置安全策略-设置帐户安全策略113.1 背景信息113.2 自动锁定和解锁帐户113.2.1 配置failed_login_attempts参数113.2.2 配置password_lock_time参数 113.3 手动锁定和解锁帐户113.4 删除不再使用的帐户 openGauss学习笔记…

【JavaScript】前端一定要看的 Promise 用法详细解析

每一个前端都要学的 Promise 用法详细解析 文章目录 前言一. 认识Promise1.1. 异步回调处理1.2. 什么是Promise1.3. Promise重构 二. Promise对象方法2.1. Executor2.2. then方法 2.2.1. then方法两个参数2.2.2. then方法多次调用2.2.3. then方法的返回值2.3. catch方法2.3.1.…

【教3妹学编程-算法题】2914. 使二进制字符串变美丽的最少修改次数

3妹&#xff1a;呜呜&#xff0c;烦死了&#xff0c; 脸上长了一个痘 2哥 : 不要在意这些细节嘛&#xff0c;不用管它&#xff0c;过两天自然不就好了。 3妹&#xff1a;切&#xff0c;你不懂&#xff0c;影响这两天的心情哇。 2哥 : 我看你是不急着找工作了啊&#xff0c; 工作…

计算两个时间之间连续的日期(java)

背景介绍 给出两个时间&#xff0c;希望算出两者之间连续的日期&#xff0c;比如时间A:2023-10-01 00:00:00 时间B:2023-11-30 23:59:59,期望得到的连续日期为2023-10-01、2023-10-02、… 2023-11-30 Java版代码示例 import java.time.temporal.ChronoUnit; import java.tim…

relectron框架——打包前端vue3、react为pc端exe可执行程序

文章目录 ⭐前言⭐搭建Electron打包环境&#x1f496; npm镜像调整&#x1f496; 初始化项目&#x1f496; 配置index.js ⭐打包vue3⭐打包react⭐总结⭐结束 ⭐前言 大家好&#xff0c;我是yma16&#xff0c;本文分享关于使用electronjs打包前端vue3、react成exe可执行程序。…

SpringBoot热部署2023最新版IDEA详细步骤

1、在pom.xml中配置依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-devtools</artifactId><optional>true</optional> </dependency>注意&#xff1a; 依赖放在标签里面 加入依赖后…

『亚马逊云科技产品测评』活动征文|占了个便宜,12个月的免费云服务器

授权声明&#xff1a;本篇文章授权活动官方亚马逊云科技文章转发、改写权&#xff0c;包括不限于在 Developer Centre, 知乎&#xff0c;自媒体平台&#xff0c;第三方开发者媒体等亚马逊云科技官方渠道 在群里看到有小伙伴说亚马逊可以免费试用服务器&#xff0c;这种好事不得…

Android 字体资源

关于作者&#xff1a;CSDN内容合伙人、技术专家&#xff0c; 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 &#xff0c;擅长java后端、移动开发、商业变现、人工智能等&#xff0c;希望大家多多支持。 未经允许不得转载 目录 一、导读二、概览三、 XML 中的字体四…

HTML5+CSS3+JS小实例:简约的黑色分页

实例:简约的黑色分页 技术栈:HTML+CSS+JS 效果: 源码: 【HTML】 <!DOCTYPE html> <html><head><meta http-equiv="content-type" content="text/html; charset=utf-8"><meta name="viewport" content="…

Vue3问题:如何实现组件拖拽实时预览功能?

前端功能问题系列文章&#xff0c;点击上方合集↑ 序言 大家好&#xff0c;我是大澈&#xff01; 本文约3000字&#xff0c;整篇阅读大约需要5分钟。 本文主要内容分三部分&#xff0c;第一部分是需求分析&#xff0c;第二部分是实现步骤&#xff0c;第三部分是问题详解。 …

Cgroups定义及验证

sudo lsb_release -a可以看到操作系统版本是20.04&#xff0c;sudo uname -r可以看到内核版本是5.4.0-156-generic。 Linux Cgroups 的全称是 Linux Control Group。它最主要的作用&#xff0c;就是限制一个进程组能够使用的资源上限&#xff0c;包括 CPU、内存、磁盘、网络带…

剑指JUC原理-9.Java无锁模型

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱吃芝士的土豆倪&#xff0c;24届校招生Java选手&#xff0c;很高兴认识大家&#x1f4d5;系列专栏&#xff1a;Spring源码、JUC源码&#x1f525;如果感觉博主的文章还不错的话&#xff0c;请&#x1f44d;三连支持&…

[推荐]SpringBoot java实现文件/附件上传下载 服务器 数据库 拿来就用,简单实用

推荐一个思路非常简单又很实用的文件上传下载方式&#xff0c;代码十分简练&#xff0c;可以开箱即用&#xff0c;下面是使用到的一些工具类和业务代码&#xff1b; 1.文件上传实现 判断文件类型的工具类&#xff0c;一些使用到的实体类我会凡在文末&#xff0c;需要可以的自…

【Hydro】部分基流分割方法及程序代码说明

目录 说明一、数字滤波法单参数数字滤波Lyne-Hollick滤波法Chapman滤波法Chapman-Maxwell滤波法Boughton-Chapman滤波法 双参数滤波法Eckhardt滤波法 二、其他基流分割方法基流指数&#xff08;BFI&#xff09;法时间步长&#xff08;HYSEP&#xff09;法PART法加里宁-阿里巴扬…

【JAVA学习笔记】60 - 坦克大战1.0-绘图坐标体系、事件处理机制

项目代码 https://github.com/yinhai1114/Java_Learning_Code/tree/main/IDEA_Chapter16/src/com/yinhai 绘图坐标体系 一、基本介绍 下图说明了Java坐标系。坐标原点位于左上角&#xff0c;以像素为单位。在Java坐标系中&#xff0c;第一个是x坐标&#xff0c;表示当前位置为…