STM32F4X SDIO(六) 例程讲解-SD_PowerON

news2024/11/29 20:35:26

STM32F4X SDIO(六) 例程讲解-SD_PowerON

  • 例程讲解-SD_PowerON
    • SDIO引脚初始化和时钟初始化
    • SDIO初始化(单线模式)
    • CMD0:GO_IDLE_STATE
      • 命令发送程序
      • 命令响应程序
    • CMD8:SEND_IF_COND
      • CMD8参数
      • 命令发送程序
      • 命令响应程序
    • CMD55:APP_CMD
      • CMD55命令参数
      • 命令发送
      • 命令响应
    • ACMD41:SD_SEND_OP_COND
      • ACMD41参数
      • 命令发送
      • 命令响应
    • SD卡上电流程
    • 野火电子SD卡上电程序

从本节开始将会结合实际的例程讲解SD卡使用,包括SDIO控制器初始化,SD卡初始化,SD卡擦除、SD卡读写等。本例程将会使用野火电子的STM32F407的SD卡读写例程进行讲解。

例程讲解-SD_PowerON

SD_PowerON函数主要是配置SDIO的引脚询问SD卡的工作电压配置SD卡时钟

SDIO引脚初始化和时钟初始化

在使用STM32F4X的SDIO控制器前,需要先初始化SDIO的GPIO引脚。
在这里插入图片描述
STM32F4X的SDIO需要用到6个引脚

  • PC8:SDIO的数据线0引脚
  • PC9:SDIO的数据线1引脚
  • PC10:SDIO的数据线2引脚
  • PC11:SDIO的数据线3引脚
  • PC12:SDIO的时钟引脚
  • PD12:SDIO的命令引脚
void SD_LowLevel_Init(void)
{
  GPIO_InitTypeDef  GPIO_InitStructure;

  /* 使能GPIOC和GPIOD时钟 */
  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC | RCC_AHB1Periph_GPIOD, ENABLE);
  /* 将GPIOC8、GPIOC9、GPIOC10、GPIOC11、GPIOC12和GPIOD2 复用为SDIO   */
  GPIO_PinAFConfig(GPIOC, GPIO_PinSource8, GPIO_AF_SDIO);
  GPIO_PinAFConfig(GPIOC, GPIO_PinSource9, GPIO_AF_SDIO);
  GPIO_PinAFConfig(GPIOC, GPIO_PinSource10, GPIO_AF_SDIO);
  GPIO_PinAFConfig(GPIOC, GPIO_PinSource11, GPIO_AF_SDIO);
  GPIO_PinAFConfig(GPIOC, GPIO_PinSource12, GPIO_AF_SDIO);
  GPIO_PinAFConfig(GPIOD, GPIO_PinSource2, GPIO_AF_SDIO);

  /*  配置GPIOC8、GPIOC9、GPIOC10、GPIOC11、GPIOC12和GPIOD2引脚属性  */
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
  GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
  GPIO_Init(GPIOC, &GPIO_InitStructure);


  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
  GPIO_Init(GPIOD, &GPIO_InitStructure);


  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
  GPIO_Init(GPIOC, &GPIO_InitStructure);

  /* 使能SDIO时钟 */
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_SDIO, ENABLE);

  /*使能DMA时钟 */
  RCC_AHB1PeriphClockCmd(SD_SDIO_DMA_CLK, ENABLE);
}

在SD_LowLevel_Init函数中做了SDIO引脚和时钟的初始化操作。

SDIO初始化(单线模式)

在SD卡刚上电的初始化的时候,默认的总线宽度为1位总线宽度,其通信频率在400KHz左右,所以在SD卡上电的时候,也需要配置SDIO的总线宽度和工作频率。


SDIO_InitStructure.SDIO_ClockDiv = SDIO_INIT_CLK_DIV; // SDIOCLK分频系数
SDIO_InitStructure.SDIO_ClockEdge = SDIO_ClockEdge_Rising; // SDIO_CK的采样模式
SDIO_InitStructure.SDIO_ClockBypass = SDIO_ClockBypass_Disable;// SDIO_CK的使能
SDIO_InitStructure.SDIO_ClockPowerSave = SDIO_ClockPowerSave_Disable;// SDIO_CK是否使用节能模式
SDIO_InitStructure.SDIO_BusWide = SDIO_BusWide_1b;// SDIO总线宽度
SDIO_InitStructure.SDIO_HardwareFlowControl = SDIO_HardwareFlowControl_Disable; // 是否使用硬件流控
SDIO_Init(&SDIO_InitStructure);

这里需要注意的SDIO_CK的频率计算

在这里插入图片描述
根据数据手册可以知道SDIO_CK的计算公式。STM32F4X的SDIOCLK的时钟频率是48MHz,SDIO_INIT_CLK_DIV值为0x76,那么SDIO_CK频率计算如下
SDIO_CK = SDIOCLK / (0x76 + 2) = 400KHz
刚好满足SD卡上电时的频率要求。

CMD0:GO_IDLE_STATE

SD卡初始化的第一步是发送CMD0命令复位SD卡,让SD卡进入IDLE状态。
在这里插入图片描述

命令发送程序

  SDIO_CmdInitStructure.SDIO_Argument = 0x0; // 没有参数
  SDIO_CmdInitStructure.SDIO_CmdIndex = SD_CMD_GO_IDLE_STATE; // CMD0
  SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_No; // 没有响应
  SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No; // 不等待
  SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable; // 使能CPSM状态机
  SDIO_SendCommand(&SDIO_CmdInitStructure);
  errorstatus = CmdError(); // 判断错误状态

调用SDIO_SendCommand函数发送CMD0命令到SD卡

在这里插入图片描述

命令响应程序

发送完CMD0之后需要判断发送是否有误,由于CMD0没有响应数据,所以只需判断SDIO控制器状态即可

static SD_Error CmdError(void)
{
  SD_Error errorstatus = SD_OK;
  uint32_t timeout;

  timeout = SDIO_CMD0TIMEOUT; /*!< 10000 */

  while ((timeout > 0) && (SDIO_GetFlagStatus(SDIO_FLAG_CMDSENT) == RESET))
  {
    timeout--;
  }

  if (timeout == 0)
  {
    errorstatus = SD_CMD_RSP_TIMEOUT;
    return(errorstatus);
  }

  /*!< Clear all the static flags */
  SDIO_ClearFlag(SDIO_STATIC_FLAGS);

  return(errorstatus);
}

CMD8:SEND_IF_COND

CMD8命令的作用有两个,分别是电压校验扩展现有的命令和响应
在SD卡进入IDLE模式后,下一步就是通过CMD8给SD卡发送电压校验命令。
在这里插入图片描述

CMD8参数

在这里插入图片描述
在这里插入图片描述

bit[39:8]是CMD8的参数。

  • bit[39:20]:保留位,为0
  • bit[19:16]:支持的电压范围,从表中可以知道这里我们写1
  • bit[15:8]:根据手册,bit[15:8]要为0xAA
    所以CMD8的参数的输入参数就为0x1AA

命令发送程序

  SDIO_CmdInitStructure.SDIO_Argument = SD_CHECK_PATTERN; // 参数,为0x1AA
  SDIO_CmdInitStructure.SDIO_CmdIndex = SDIO_SEND_IF_COND; // 命令编号 CMD8
  SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_Short; // 短响应
  SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No;  // 不等待
  SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable;  // 使用CPSM状态机
  SDIO_SendCommand(&SDIO_CmdInitStructure);

在这里插入图片描述

命令响应程序

CMD8的响应类型是R7,如果SD卡接受提供的电压范围就会返回R7响应,否则不会返回R7响应。
在这里插入图片描述

/* 检查R7响应 */
static SD_Error CmdResp7Error(void)
{
  SD_Error errorstatus = SD_OK;
  uint32_t status;
  uint32_t timeout = SDIO_CMD0TIMEOUT;

  status = SDIO->STA;

  while (!(status & (SDIO_FLAG_CCRCFAIL | SDIO_FLAG_CMDREND | SDIO_FLAG_CTIMEOUT)) && (timeout > 0))
  {
    timeout--;
    status = SDIO->STA;
  }

  if ((timeout == 0) || (status & SDIO_FLAG_CTIMEOUT))
  {
    /*!< Card is not V2.0 complient or card does not support the set voltage range */
    errorstatus = SD_CMD_RSP_TIMEOUT;
    SDIO_ClearFlag(SDIO_FLAG_CTIMEOUT);
    return(errorstatus);
  }

  if (status & SDIO_FLAG_CMDREND)
  {
    /*!< Card is SD V2.0 compliant */
    errorstatus = SD_OK;
    SDIO_ClearFlag(SDIO_FLAG_CMDREND);
    return(errorstatus);
  }
  return(errorstatus);
}

在这里插入图片描述

如何SD卡响应CMD8命令,则代表该SD卡为SD2.0以上的卡

SDIO_CmdInitStructure.SDIO_Argument = SD_CHECK_PATTERN;
  SDIO_CmdInitStructure.SDIO_CmdIndex = SDIO_SEND_IF_COND;
  SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_Short;
  SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No;
  SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable;
  SDIO_SendCommand(&SDIO_CmdInitStructure);

  errorstatus = CmdResp7Error();

  if (errorstatus == SD_OK)
  {
    CardType = SDIO_STD_CAPACITY_SD_CARD_V2_0; /*!< SD Card 2.0 */
    SDType = SD_HIGH_CAPACITY;
  }

CMD55:APP_CMD

在主机发完CMD8命令后,如果SD卡响应CMD8命令,那么接下来主机就需要发送CMD55命令,告诉SD卡在CMD55命令后的是特殊应用命令
在这里插入图片描述

CMD55命令参数

  • bit[31:16]:RCA,SD卡的地址,这里因为还没有获取到SD卡地址,所以设为0
  • bit[15:0]:一般为0

命令发送

    SDIO_CmdInitStructure.SDIO_Argument = 0x00; // CMD55参数
    SDIO_CmdInitStructure.SDIO_CmdIndex = SD_CMD_APP_CMD; // 命令索引 CMD55
    SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_Short; // 短响应
    SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No; // 不等待
    SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable; // CPSM状态机使能
    SDIO_SendCommand(&SDIO_CmdInitStructure);

在这里插入图片描述

命令响应

CMD55的命令响应是R1,R1命令会返回SD卡的状态,所以在判断R1响应时需要判断SD卡的状态是否正常。
在这里插入图片描述

R1响应返回的卡状态如下
在这里插入图片描述
在这里插入图片描述

static SD_Error CmdResp1Error(uint8_t cmd)
{
  SD_Error errorstatus = SD_OK;
  uint32_t status;
  uint32_t response_r1;

  status = SDIO->STA;

 /* 判断SDIO控制器状态 */
  while (!(status & (SDIO_FLAG_CCRCFAIL | SDIO_FLAG_CMDREND | SDIO_FLAG_CTIMEOUT)))
  {
    status = SDIO->STA;
  }

  if (status & SDIO_FLAG_CTIMEOUT)
  {
    errorstatus = SD_CMD_RSP_TIMEOUT;
    SDIO_ClearFlag(SDIO_FLAG_CTIMEOUT);
    return(errorstatus);
  }
  else if (status & SDIO_FLAG_CCRCFAIL)
  {
    errorstatus = SD_CMD_CRC_FAIL;
    SDIO_ClearFlag(SDIO_FLAG_CCRCFAIL);
    return(errorstatus);
  }

  /*!< 命令号是否为发送的命令号 */
  if (SDIO_GetCommandResponse() != cmd)
  {
    errorstatus = SD_ILLEGAL_CMD;
    return(errorstatus);
  }

  /*!< Clear all the static flags */
  SDIO_ClearFlag(SDIO_STATIC_FLAGS);

  /*!< 依次判断SD卡状态位  */
  response_r1 = SDIO_GetResponse(SDIO_RESP1);

  if ((response_r1 & SD_OCR_ERRORBITS) == SD_ALLZERO)
  {
    return(errorstatus);
  }

  if (response_r1 & SD_OCR_ADDR_OUT_OF_RANGE)
  {
    return(SD_ADDR_OUT_OF_RANGE);
  }

  if (response_r1 & SD_OCR_ADDR_MISALIGNED)
  {
    return(SD_ADDR_MISALIGNED);
  }

  if (response_r1 & SD_OCR_BLOCK_LEN_ERR)
  {
    return(SD_BLOCK_LEN_ERR);
  }

  if (response_r1 & SD_OCR_ERASE_SEQ_ERR)
  {
    return(SD_ERASE_SEQ_ERR);
  }

  if (response_r1 & SD_OCR_BAD_ERASE_PARAM)
  {
    return(SD_BAD_ERASE_PARAM);
  }

  if (response_r1 & SD_OCR_WRITE_PROT_VIOLATION)
  {
    return(SD_WRITE_PROT_VIOLATION);
  }

  if (response_r1 & SD_OCR_LOCK_UNLOCK_FAILED)
  {
    return(SD_LOCK_UNLOCK_FAILED);
  }

  if (response_r1 & SD_OCR_COM_CRC_FAILED)
  {
    return(SD_COM_CRC_FAILED);
  }

  if (response_r1 & SD_OCR_ILLEGAL_CMD)
  {
    return(SD_ILLEGAL_CMD);
  }

  if (response_r1 & SD_OCR_CARD_ECC_FAILED)
  {
    return(SD_CARD_ECC_FAILED);
  }

  if (response_r1 & SD_OCR_CC_ERROR)
  {
    return(SD_CC_ERROR);
  }

  if (response_r1 & SD_OCR_GENERAL_UNKNOWN_ERROR)
  {
    return(SD_GENERAL_UNKNOWN_ERROR);
  }

  if (response_r1 & SD_OCR_STREAM_READ_UNDERRUN)
  {
    return(SD_STREAM_READ_UNDERRUN);
  }

  if (response_r1 & SD_OCR_STREAM_WRITE_OVERRUN)
  {
    return(SD_STREAM_WRITE_OVERRUN);
  }

  if (response_r1 & SD_OCR_CID_CSD_OVERWRIETE)
  {
    return(SD_CID_CSD_OVERWRITE);
  }

  if (response_r1 & SD_OCR_WP_ERASE_SKIP)
  {
    return(SD_WP_ERASE_SKIP);
  }

  if (response_r1 & SD_OCR_CARD_ECC_DISABLED)
  {
    return(SD_CARD_ECC_DISABLED);
  }

  if (response_r1 & SD_OCR_ERASE_RESET)
  {
    return(SD_ERASE_RESET);
  }

  if (response_r1 & SD_OCR_AKE_SEQ_ERROR)
  {
    return(SD_AKE_SEQ_ERROR);
  }
  return(errorstatus);
}

例程中判断R1响应的步骤如下

  • 先判断SDIO控制的状态是否有错
  • 判断R1响应的命令号是否为CMD55
  • 最后再根据R1响应的SD卡状态位依次进行判断
    在这里插入图片描述
    根据波形图可知,返回的SD卡状态位0x120,也就是bit5和bit8置1
    在这里插入图片描述

ACMD41:SD_SEND_OP_COND

发送ACMD41的作用是告诉SD卡,主机是否支持大容量卡,并且判断SD卡是否上电完成。
在这里插入图片描述

ACMD41参数

ACMD41参数是根据SD卡的OCR寄存器进行定义,以下为OCR寄存器的定义表

在这里插入图片描述

在这里我们需要注意以下几个bit

  • bit[30]:卡容量位,如果是高容量卡,设置为 1,如果是标准卡,设置为 0。
  • bit[31]:卡上电状态位,这个状态位在卡的上电流程完成后设置
    在程序中,我们需要将bit30和bit31都设置为1,卡的电压设置为3.2-3.3,也就是bit20为1,则AMCD41的输入参数就为0xC0100000

命令发送

      SDIO_CmdInitStructure.SDIO_Argument = SD_VOLTAGE_WINDOW_SD | SDType; // 参数 0xC0100000
      SDIO_CmdInitStructure.SDIO_CmdIndex = SD_CMD_SD_APP_OP_COND; // 命令索引 ACMD41
      SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_Short; // 短响应
      SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No; // 不等待
      SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable; // CPSM状态机使能
      SDIO_SendCommand(&SDIO_CmdInitStructure);

在这里插入图片描述

命令响应

ACMD41的响应是R3响应
在这里插入图片描述
例程中需要判断R3响应的OCR寄存器中的bit[31]是否为1,如果不为1,则需要循环发送CMD55和ACMD41,一直等到OCR寄存器总bit31为1

while ((!validvoltage) && (count < SD_MAX_VOLT_TRIAL))
    {

      /*!< SEND CMD55 APP_CMD with RCA as 0 */
      SDIO_CmdInitStructure.SDIO_Argument = 0x00;
      SDIO_CmdInitStructure.SDIO_CmdIndex = SD_CMD_APP_CMD;
      SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_Short;
      SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No;
      SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable;
      SDIO_SendCommand(&SDIO_CmdInitStructure);

      errorstatus = CmdResp1Error(SD_CMD_APP_CMD);

      if (errorstatus != SD_OK)
      {
        return(errorstatus);
      }
      SDIO_CmdInitStructure.SDIO_Argument = SD_VOLTAGE_WINDOW_SD | SDType;
      SDIO_CmdInitStructure.SDIO_CmdIndex = SD_CMD_SD_APP_OP_COND;
      SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_Short;
      SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No;
      SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable;
      SDIO_SendCommand(&SDIO_CmdInitStructure);

      errorstatus = CmdResp3Error();
      if (errorstatus != SD_OK)
      {
        return(errorstatus);
      }

      response = SDIO_GetResponse(SDIO_RESP1);
      validvoltage = (((response >> 31) == 1) ? 1 : 0); // 判断bit31是否为1,如果为1则代表SD卡上电完成
      count++;
    }
    if (count >= SD_MAX_VOLT_TRIAL)
    {
      errorstatus = SD_INVALID_VOLTRANGE;
      return(errorstatus);
    }

    if (response &= SD_HIGH_CAPACITY)
    {
      CardType = SDIO_HIGH_CAPACITY_SD_CARD;
    }

在这里插入图片描述
至此,SD卡上电部分就完成了,下面来简介梳理一下SD卡上电的流程

SD卡上电流程

  1. 初始化SDIO引脚和时钟
  2. 初始化SDIO控制器,设置总线宽度为1,SDIO_CK频率不高于400KHz
  3. 发生CMD0命令,让SD卡进入IDLE模式
  4. 发生CMD8命令,判断SD卡是否支持设置的电压范围
  5. 发送CMD55命令
  6. 发送ACMD41命令,并判断SD卡是否上电完成,如果没有上电完成就重复5和6步骤
  7. SD卡上电完成

野火电子SD卡上电程序

SD_Error SD_PowerON(void)
{
  __IO SD_Error errorstatus = SD_OK;
  uint32_t response = 0, count = 0, validvoltage = 0;
  uint32_t SDType = SD_STD_CAPACITY;

  /*!< Power ON Sequence -----------------------------------------------------*/
  /*!< Configure the SDIO peripheral */
  /*!< SDIO_CK = SDIOCLK / (SDIO_INIT_CLK_DIV + 2) */
  /*!< on STM32F4xx devices, SDIOCLK is fixed to 48MHz */
  /*!< SDIO_CK for initialization should not exceed 400 KHz */  
  SDIO_InitStructure.SDIO_ClockDiv = SDIO_INIT_CLK_DIV;
  SDIO_InitStructure.SDIO_ClockEdge = SDIO_ClockEdge_Rising;
  SDIO_InitStructure.SDIO_ClockBypass = SDIO_ClockBypass_Disable;
  SDIO_InitStructure.SDIO_ClockPowerSave = SDIO_ClockPowerSave_Disable;
  SDIO_InitStructure.SDIO_BusWide = SDIO_BusWide_1b;
  SDIO_InitStructure.SDIO_HardwareFlowControl = SDIO_HardwareFlowControl_Disable;
  SDIO_Init(&SDIO_InitStructure);

  /*!< Set Power State to ON */
  SDIO_SetPowerState(SDIO_PowerState_ON);

  /*!< Enable SDIO Clock */
  SDIO_ClockCmd(ENABLE);

  /*!< CMD0: GO_IDLE_STATE ---------------------------------------------------*/
  /*!< No CMD response required */
  SDIO_CmdInitStructure.SDIO_Argument = 0x0;
  SDIO_CmdInitStructure.SDIO_CmdIndex = SD_CMD_GO_IDLE_STATE;
  SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_No;
  SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No;
  SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable;
  SDIO_SendCommand(&SDIO_CmdInitStructure);

  errorstatus = CmdError();

  if (errorstatus != SD_OK)
  {
    /*!< CMD Response TimeOut (wait for CMDSENT flag) */
    return(errorstatus);
  }

  /*!< CMD8: SEND_IF_COND ----------------------------------------------------*/
  /*!< Send CMD8 to verify SD card interface operating condition */
  /*!< Argument: - [31:12]: Reserved (shall be set to '0')
               - [11:8]: Supply Voltage (VHS) 0x1 (Range: 2.7-3.6 V)
               - [7:0]: Check Pattern (recommended 0xAA) */
  /*!< CMD Response: R7 */
  SDIO_CmdInitStructure.SDIO_Argument = SD_CHECK_PATTERN;
  SDIO_CmdInitStructure.SDIO_CmdIndex = SDIO_SEND_IF_COND;
  SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_Short;
  SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No;
  SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable;
  SDIO_SendCommand(&SDIO_CmdInitStructure);

  errorstatus = CmdResp7Error();

  if (errorstatus == SD_OK)
  {
    CardType = SDIO_STD_CAPACITY_SD_CARD_V2_0; /*!< SD Card 2.0 */
    SDType = SD_HIGH_CAPACITY;
  }
  else
  {
    /*!< CMD55 */
    SDIO_CmdInitStructure.SDIO_Argument = 0x00;
    SDIO_CmdInitStructure.SDIO_CmdIndex = SD_CMD_APP_CMD;
    SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_Short;
    SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No;
    SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable;
    SDIO_SendCommand(&SDIO_CmdInitStructure);
    errorstatus = CmdResp1Error(SD_CMD_APP_CMD);
  }
  /*!< CMD55 */
  SDIO_CmdInitStructure.SDIO_Argument = 0x00;
  SDIO_CmdInitStructure.SDIO_CmdIndex = SD_CMD_APP_CMD;
  SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_Short;
  SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No;
  SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable;
  SDIO_SendCommand(&SDIO_CmdInitStructure);
  errorstatus = CmdResp1Error(SD_CMD_APP_CMD);

  /*!< If errorstatus is Command TimeOut, it is a MMC card */
  /*!< If errorstatus is SD_OK it is a SD card: SD card 2.0 (voltage range mismatch)
     or SD card 1.x */
  if (errorstatus == SD_OK)
  {
    /*!< SD CARD */
    /*!< Send ACMD41 SD_APP_OP_COND with Argument 0x80100000 */
    while ((!validvoltage) && (count < SD_MAX_VOLT_TRIAL))
    {

      /*!< SEND CMD55 APP_CMD with RCA as 0 */
      SDIO_CmdInitStructure.SDIO_Argument = 0x00;
      SDIO_CmdInitStructure.SDIO_CmdIndex = SD_CMD_APP_CMD;
      SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_Short;
      SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No;
      SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable;
      SDIO_SendCommand(&SDIO_CmdInitStructure);

      errorstatus = CmdResp1Error(SD_CMD_APP_CMD);

      if (errorstatus != SD_OK)
      {
        return(errorstatus);
      }
      SDIO_CmdInitStructure.SDIO_Argument = SD_VOLTAGE_WINDOW_SD | SDType;
      SDIO_CmdInitStructure.SDIO_CmdIndex = SD_CMD_SD_APP_OP_COND;
      SDIO_CmdInitStructure.SDIO_Response = SDIO_Response_Short;
      SDIO_CmdInitStructure.SDIO_Wait = SDIO_Wait_No;
      SDIO_CmdInitStructure.SDIO_CPSM = SDIO_CPSM_Enable;
      SDIO_SendCommand(&SDIO_CmdInitStructure);

      errorstatus = CmdResp3Error();
      if (errorstatus != SD_OK)
      {
        return(errorstatus);
      }

      response = SDIO_GetResponse(SDIO_RESP1);
      validvoltage = (((response >> 31) == 1) ? 1 : 0);
      count++;
    }
    if (count >= SD_MAX_VOLT_TRIAL)
    {
      errorstatus = SD_INVALID_VOLTRANGE;
      return(errorstatus);
    }

    if (response &= SD_HIGH_CAPACITY)
    {
      CardType = SDIO_HIGH_CAPACITY_SD_CARD;
    }

  }/*!< else MMC Card */

  return(errorstatus);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1166035.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

XCTF-RSA-2:baigeiRSA2、 cr4-poor-rsa

baigeiRSA2 题目描述 import libnum from Crypto.Util import number from functools import reduce from secret import flagn 5 size 64 while True:ps [number.getPrime(size) for _ in range(n)]if len(set(ps)) n:breake 65537 n reduce(lambda x, y: x*y, ps) m …

docker网络管理-网络模式

2.4 网络管理 需要安装sudo apt install bridge-utils Docker 网络很重要&#xff0c;重要的&#xff0c;我们在上面学到的所有东西都依赖于网络才能工作。我们从两个方面来学习网络&#xff1a; 端口映射和网络模式 为什么先学端口映射呢&#xff1f; 在一台主机上学习网络&…

strongswan:configure: error: OpenSSL Crypto library not found

引子 在配置strongswan时&#xff0c;有时会遇到以下错误&#xff08;其实所有需要openssl的软件configure时都有可能遇到该问题&#xff09;&#xff1a; configure: error: OpenSSL Crypto library not found 解决方法 crypto是什么呢? 是OpenSSL 加密库(lib), 这个库需要op…

全局代理和局部代理的区别

在计算机领域中&#xff0c;代理是一种常见的网络技术&#xff0c;它可以帮助用户更好地控制网络访问和数据传输。代理可以分为全局代理和局部代理两种&#xff0c;它们有着不同的作用和适用场景。 一、全局代理 全局代理指的是在系统级别设置的代理&#xff0c;它可以代理所…

Qt控件 UI设计 QPushbutton、QToolButton、QMenu

Qt控件 UI设计 QPushbutton、QToolButton、QMenu 个人设计QToolButton效果设计效果运行效果 Chapter1 Qt控件 UI设计 QPushbutton、QToolButton、QMenu1.QPushbutton和QToolButton的关联和区别&#xff1a;2.QMenu 可以配合QPushbutton做个下拉菜单3.点击按钮的功能&#xff0c…

HTTP/HTTPS、SSL/TLS、WS/WSS 都是什么?

有同学问我&#xff0c;HTTP/HTTPS、SSL/TLS、WS/WSS 这都是些什么&#xff1f;那我们就先从概念说起&#xff1a; HTTP 是超文本传输协议&#xff0c;信息是通过明文传输。HTTPS 是在 HTTP 的基础上信息通过加密后再传输。SSL 是实现 HTTPS 信息传输加密的算法。TLS 是 SSL 的…

PMI-ACP(103:17-)

巩固复习&#xff1a;SCRUM Scrum是目前敏捷项目管理的经典框架&#xff0c;在2020年最新版的《Scrum指南》中&#xff0c;Scrum之父对迭代目标和完成的定义进行了更为清晰的阐释。 在Scrum里比较重要的是Sprint冲刺。一个Sprint长度一般是2&#xff5e;4周&#xff0c;固定&…

数据结构:邻接矩阵与邻接表

模型图 邻接矩阵 用于反应图中任意两点之间的关联&#xff0c;用二维数组表示比较方便 以行坐标为起点&#xff0c;列坐标为终点如果两个点之间有边&#xff0c;那么标记为绿色&#xff0c;如图&#xff1a; 适合表示稠密矩阵 邻接表 用一维数组 链表的形式表示&#xff…

day02-Ant Design以及Ant Design Pro入门

课程简介 ReactJS入门&#xff0c;Model层 Ant Design 入门 Ant Design Pro 入门 1、ReactJS入门 1.1、Model 1.1.1、分层 上图中&#xff0c;左侧是服务端代码的层次结构&#xff0c;由 Controller 、 Service 、 Data Access 三层组成服务端系统&#xff1a; Contro…

一分钟生成PPT,利用人工智能快速提高办公效率(无需第三方插件)

人工智能技术的发展正以惊人的速度改变着我们的世界&#xff0c;今天给大家介绍下利用ChatGPT快速生成PPT的方法&#xff0c;它能够帮助你一键生成PPT内容和漂亮的PPT文档&#xff0c;无需繁琐的设计和排版&#xff0c;只需要与ChatGPT交流&#xff0c;你就能轻松拥有一份令人赞…

社区论坛在线交流网站系统源码+SEO优化 带前后端完整搭建教程

大家好&#xff0c;今天罗峰来给大家分享一款社区论坛在线交流网站系统源码。社区论坛在线交流在当下时时代还是很火的。现在人们对于在线交流和互动的需求不断增加。社区论坛作为一种传统的在线交流方式&#xff0c;仍然有着广泛的市场需求和用户群体。然而&#xff0c;现有的…

redis1之安装redis,启动,常用数据结构

目录 redis安装与启动、常见数据结构 启动 Redis客户端 数据结构与常见的命令 redis的通用命令 String类型的用法 Hash命令的用法 List命令 Set命令 SortedSet类型用法 redis安装与启动、常见数据结构 1&#xff0c;在linux上安装上gcc的依赖&#xff0c;我这里是centos7.6…

为什么边缘计算是能源行业缺失的一环

关键要点 展望未来&#xff0c;边缘计算将使能源部门能够更好地应对不断增长的能源需求的挑战&#xff0c;提高资源利用率&#xff0c;并实现更可持续的能源生态系统。 能源行业正在经历重大变革&#xff0c;因为它面临着许多挑战&#xff0c;例如整合可再生能源、电力需求激增…

thinkPHP5怎么打开页面调试,查看网页运行时间

开启trace 在config.php中找到 ‘app_trace’ > false, 修改为&#xff1a; ‘app_trace’ > true,

中国统计年鉴,覆盖2016-2022年数据,超全数据一览!

今天分享一个超详细中国统计年鉴&#xff0c;覆盖2016-2022年数据&#xff0c;包含多方面数据及指标&#xff0c;需要可自取 网站搜索“citybox城市沙盒”或同名wechat订阅号可自行获取 数据信息&#xff1a; 数据名称: 中国统计年鉴 数据格式: Html、Excel 数据时间: 20…

chromedp库编写程序

步骤1&#xff1a;首先&#xff0c;我们需要导入chromedp库&#xff0c;以便使用它来下载网页内容。 import chromedp 步骤2&#xff1a;然后&#xff0c;我们需要创建一个函数&#xff0c;该函数接受一个URL作为参数&#xff0c;并使用chromedp库下载该URL的内容。 func do…

有什么好用的日常事务管理软件?的修APP对日常管理有什么帮助?

在快节奏的现代生活中&#xff0c;我们每天都要面对各种各样的工作任务和琐事。有时候&#xff0c;我们可能会因为忘记重要事项或者没有规划好时间而导致工作效率低下。为了解决这个问题&#xff0c;我为大家推荐一款日常管理神器——的修APP。   的修APP是一款简单易用的日常…