L1和L2正则化通俗理解

news2024/11/8 17:37:12

机器学习中,如果参数过多,模型过于复杂,容易造成过拟合(overfit)。即模型在训练样本数据上表现的很好,但在实际测试样本上表现的较差,不具备良好的泛化能力。为了避免过拟合,最常用的一种方法是使用使用正则化,例如 L1 和 L2 正则化。

1. L1和L2的区别

在机器学习中,

L1范数(L2 normalization)是指向量中各个元素绝对值之和,通常表述为\|\boldsymbol{w_i}\|_1,线性回归中使用L1正则的模型也叫Lasso regularization
比如 向量A=[1,-1,3], 那么A的L1范数为 |1|+|-1|+|3|.

L2范数指权值向量w中各个元素的平方和然后再求平方根(可以看到Ridge回归的L2正则化项有平方符号),通常表示为\|\boldsymbol{w_i}\|_2, 线性回归中使用L2正则的模型又叫岭回归(Ringe regularization)。

简单总结一下就是:

L1范数: 为x向量各个元素绝对值之和。
L2范数: 为x向量各个元素平方和的1/2次方,L2范数又称Euclidean范数或者Frobenius范数
Lp范数: 为x向量各个元素绝对值p次方和的1/p次方.
下图为p从无穷到0变化时,三维空间中到原点的距离(范数)为1的点构成的图形的变化情况。以常见的L-2范数(p=2)为例,此时的范数也即欧氏距离,空间中到原点的欧氏距离为1的点构成了一个球面

参数正则化作用

  • L1: 为模型加入先验, 简化模型, 使权值稀疏,由于权值的稀疏,从而过滤掉一些无用特征,防止过拟合
  • L2: 根据L2的特性,它会使得权值减小,即使平滑权值,一定程度上也能和L1一样起到简化模型,加速训练的作用,同时可防止模型过拟合

2. L2 正则化直观解释

L2 正则化公式非常简单,直接在原来的损失函数基础上加上权重参数的平方和:

其中,Ein 是未包含正则化项的训练样本误差,λ 是正则化参数,可调。但是正则化项是如何推导的?接下来,我将详细介绍其中的物理意义。

我们知道,正则化的目的是限制参数过多或者过大,避免模型更加复杂。例如,使用多项式模型,如果使用 10 阶多项式,模型可能过于复杂,容易发生过拟合。所以,为了防止过拟合,我们可以将其高阶部分的权重 w 限制为 0,这样,就相当于从高阶的形式转换为低阶。

为了达到这一目的,最直观的方法就是限制 w 的个数,但是这类条件属于 NP-hard 问题,求解非常困难。所以,一般的做法是寻找更宽松的限定条件:

上式是对 w 的平方和做数值上界限定,即所有w 的平方和不超过参数 C。这时候,我们的目标就转换为:最小化训练样本误差 Ein,但是要遵循 w 平方和小于 C 的条件。

下面,我用一张图来说明如何在限定条件下,对 Ein 进行最小化的优化。

如上图所示,蓝色椭圆区域是最小化 Ein 区域,红色圆圈是 w 的限定条件区域。在没有限定条件的情况下,一般使用梯度下降算法,在蓝色椭圆区域内会一直沿着 w 梯度的反方向前进,直到找到全局最优值 wlin。例如空间中有一点 w(图中紫色点),此时 w 会沿着 -∇Ein 的方向移动,如图中蓝色箭头所示。但是,由于存在限定条件,w 不能离开红色圆形区域,最多只能位于圆上边缘位置,沿着切线方向。w 的方向如图中红色箭头所示。

那么问题来了,存在限定条件,w 最终会在什么位置取得最优解呢?也就是说在满足限定条件的基础上,尽量让 Ein 最小。

我们来看,w 是沿着圆的切线方向运动,如上图绿色箭头所示。运动方向与 w 的方向(红色箭头方向)垂直。运动过程中,根据向量知识,只要 -∇Ein 与运行方向有夹角,不垂直,则表明 -∇Ein 仍会在 w 切线方向上产生分量,那么 w 就会继续运动,寻找下一步最优解。只有当 -∇Ein 与 w 的切线方向垂直时,-∇Ein在 w 的切线方向才没有分量,这时候 w 才会停止更新,到达最接近 wlin 的位置,且同时满足限定条件。

-∇Ein 与 w 的切线方向垂直,即 -∇Ein 与 w 的方向平行。如上图所示,蓝色箭头和红色箭头互相平行。这样,根据平行关系得到:

移项,得:

这样,我们就把优化目标和限定条件整合在一个式子中了。也就是说只要在优化 Ein 的过程中满足上式,就能实现正则化目标。

接下来,重点来了!根据最优化算法的思想:梯度为 0 的时候,函数取得最优值。已知 ∇Ein 是 Ein 的梯度,观察上式,λw 是否也能看成是某个表达式的梯度呢?

当然可以!λw 可以看成是 1/2λw*w 的梯度:

这样,我们根据平行关系求得的公式,构造一个新的损失函数:

之所以这样定义,是因为对 Eaug 求导,正好得到上面所求的平行关系式。上式中等式右边第二项就是 L2 正则化项。

这样, 我们从图像化的角度,分析了 L2 正则化的物理意义,解释了带 L2 正则化项的损失函数是如何推导而来的。

3. L1 正则化直观解释

L1 正则化公式也很简单,直接在原来的损失函数基础上加上权重参数的绝对值:

我仍然用一张图来说明如何在 L1 正则化下,对 Ein 进行最小化的优化。

Ein 优化算法不变,L1 正则化限定了 w 的有效区域是一个正方形,且满足 |w| < C。空间中的点 w 沿着 -∇Ein 的方向移动。但是,w 不能离开红色正方形区域,最多只能位于正方形边缘位置。其推导过程与 L2 类似,此处不再赘述。

4. L1 与 L2 解的稀疏性

介绍完 L1 和 L2 正则化的物理解释和数学推导之后,我们再来看看它们解的分布性。

以二维情况讨论,上图左边是 L2 正则化,右边是 L1 正则化。从另一个方面来看,满足正则化条件,实际上是求解蓝色区域与黄色区域的交点,即同时满足限定条件和 Ein 最小化。对于 L2 来说,限定区域是圆,这样,得到的解 w1 或 w2 为 0 的概率很小,很大概率是非零的。

对于 L1 来说,限定区域是正方形,方形与蓝色区域相交的交点是顶点的概率很大,这从视觉和常识上来看是很容易理解的。也就是说,方形的凸点会更接近 Ein 最优解对应的 wlin 位置,而凸点处必有 w1 或 w2 为 0。这样,得到的解 w1 或 w2 为零的概率就很大了。所以,L1 正则化的解具有稀疏性。

扩展到高维,同样的道理,L2 的限定区域是平滑的,与中心点等距;而 L1 的限定区域是包含凸点的,尖锐的。这些凸点更接近 Ein 的最优解位置,而在这些凸点上,很多 wj 为 0。

另外通过公式也能更好的理解为什么L1具备稀疏性。

假设只有一个参数为w,损失函数为L ( w ),分别加上L1正则项和L2正则项后有:

假设L ( w )在0处的导数为d0,即

则可以推导使用L1正则和L2正则时的导数。

引入L2正则项,在0处的导数

引入L1正则项,在0处的导数

可见,引入L2正则时,代价函数在0处的导数仍是d0,无变化。而引入L1正则后,代价函数在0处的导数有一个突变。从d0 + λ 到d0 − λ,若d0 + λ 和d0 − λ 异号,则在0处会是一个极小值点。因此,优化时,很可能优化到该极小值点上,即w = 0处。

5. 正则化参数 λ

正则化是结构风险最小化的一种策略实现,能够有效降低过拟合。损失函数实际上包含了两个方面:一个是训练样本误差。一个是正则化项。其中,参数 λ 起到了权衡的作用。

以 L2 为例,若 λ 很小,对应上文中的 C 值就很大。这时候,圆形区域很大,能够让 w 更接近 Ein 最优解的位置。若 λ 近似为 0,相当于圆形区域覆盖了最优解位置,这时候,正则化失效,容易造成过拟合。相反,若 λ 很大,对应上文中的 C 值就很小。这时候,圆形区域很小,w 离 Ein 最优解的位置较远。w 被限制在一个很小的区域内变化,w 普遍较小且接近 0,起到了正则化的效果。但是,λ 过大容易造成欠拟合。欠拟合和过拟合是两种对立的状态。

6. pytorch实现L1与L2正则化

网上很多关于L2和L1正则化的对象都是针对参数的,或者说权重,即权重衰减,可以用pytorch很简单的实现L2惩罚:

class torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)

如上,weight_decay参数即为L2惩罚项前的系数

举个栗子,对模型中的某些参数进行惩罚时

#定义一层感知机
net = nn.Linear(num_inputs, 1)
#自定义参数初始化
nn.init.normal_(net.weight, mean=0, std=1)
nn.init.normal_(net.bias, mean=0, std=1)
optimizer_w = torch.optim.SGD(params=[net.weight], lr=lr, weight_decay=wd) # 对权重参数衰减,惩罚项前的系数为wd
optimizer_b = torch.optim.SGD(params=[net.bias], lr=lr)  # 不对偏差参数衰减

而对于L1正则化或者其他的就比较麻烦了,因为pytorch优化器只封装了L2惩罚功能,需要自定义L1方法:

class Regularization(torch.nn.Module):
    def __init__(self,model,weight_decay,p=2):
        '''
        :param model 模型
        :param weight_decay:正则化参数
        :param p: 范数计算中的幂指数值,默认求2范数,
                  当p=0为L2正则化,p=1为L1正则化
        '''
        super(Regularization, self).__init__()
        if weight_decay <= 0:
            print("param weight_decay can not <=0")
            exit(0)
        self.model=model
        self.weight_decay=weight_decay
        self.p=p
        self.weight_list=self.get_weight(model)
        self.weight_info(self.weight_list)
 
    def to(self,device):
        '''
        指定运行模式
        :param device: cude or cpu
        :return:
        '''
        self.device=device
        super().to(device)
        return self
 
    def forward(self, model):
        self.weight_list=self.get_weight(model)#获得最新的权重
        reg_loss = self.regularization_loss(self.weight_list, self.weight_decay, p=self.p)
        return reg_loss
 
    def get_weight(self,model):
        '''
        获得模型的权重列表
        :param model:
        :return:
        '''
        weight_list = []
        for name, param in model.named_parameters():
            if 'weight' in name:
                weight = (name, param)
                weight_list.append(weight)
        return weight_list
 
    def regularization_loss(self,weight_list, weight_decay, p=2):
        '''
        计算张量范数
        :param weight_list:
        :param p: 范数计算中的幂指数值,默认求2范数
        :param weight_decay:
        :return:
        '''
        # weight_decay=Variable(torch.FloatTensor([weight_decay]).to(self.device),requires_grad=True)
        # reg_loss=Variable(torch.FloatTensor([0.]).to(self.device),requires_grad=True)
        # weight_decay=torch.FloatTensor([weight_decay]).to(self.device)
        # reg_loss=torch.FloatTensor([0.]).to(self.device)
        reg_loss=0
        for name, w in weight_list:
            l2_reg = torch.norm(w, p=p)
            reg_loss = reg_loss + l2_reg
 
        reg_loss=weight_decay*reg_loss
        return reg_loss
 
    def weight_info(self,weight_list):
        '''
        打印权重列表信息
        :param weight_list:
        :return:
        '''
        print("---------------regularization weight---------------")
        for name ,w in weight_list:
            print(name)
        print("---------------------------------------------------")

class Regularization的使用


# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
print("-----device:{}".format(device))
print("-----Pytorch version:{}".format(torch.__version__))
 
weight_decay=100.0 # 正则化参数
 
model = my_net().to(device)
# 初始化正则化
if weight_decay>0:
   reg_loss=Regularization(model, weight_decay, p=2).to(device)
else:
   print("no regularization")
 
 
criterion= nn.CrossEntropyLoss().to(device) # CrossEntropyLoss=softmax+cross entropy
optimizer = optim.Adam(model.parameters(),lr=learning_rate)#不需要指定参数weight_decay
 
# train
batch_train_data=...
batch_train_label=...
 
out = model(batch_train_data)
 
# loss and regularization
loss = criterion(input=out, target=batch_train_label)
if weight_decay > 0:
   loss = loss + reg_loss(model)
total_loss = loss.item()
 
# backprop
optimizer.zero_grad()#清除当前所有的累积梯度
total_loss.backward()
optimizer.step()

7. 如何判断正则化作用了模型?

一般来说,正则化的主要作用是避免模型产生过拟合,当然啦,过拟合问题,有时候是难以判断的。但是,要判断正则化是否作用了模型,还是很容易的。下面我给出两组训练时产生的loss和Accuracy的log信息,一组是未加入正则化的,一组是加入正则化:

7.1 未加入正则化loss和Accuracy

优化器采用Adam,并且设置参数weight_decay=0.0,即无正则化的方法

optimizer = optim.Adam(model.parameters(),lr=learning_rate,weight_decay=0.0)

训练时输出的 loss和Accuracy信息

step/epoch:0/0,Train Loss: 2.418065, Acc: [0.15625]
step/epoch:10/0,Train Loss: 5.194936, Acc: [0.34375]
step/epoch:20/0,Train Loss: 0.973226, Acc: [0.8125]
step/epoch:30/0,Train Loss: 1.215165, Acc: [0.65625]
step/epoch:40/0,Train Loss: 1.808068, Acc: [0.65625]
step/epoch:50/0,Train Loss: 1.661446, Acc: [0.625]
step/epoch:60/0,Train Loss: 1.552345, Acc: [0.6875]
step/epoch:70/0,Train Loss: 1.052912, Acc: [0.71875]
step/epoch:80/0,Train Loss: 0.910738, Acc: [0.75]
step/epoch:90/0,Train Loss: 1.142454, Acc: [0.6875]
step/epoch:100/0,Train Loss: 0.546968, Acc: [0.84375]
step/epoch:110/0,Train Loss: 0.415631, Acc: [0.9375]
step/epoch:120/0,Train Loss: 0.533164, Acc: [0.78125]
step/epoch:130/0,Train Loss: 0.956079, Acc: [0.6875]
step/epoch:140/0,Train Loss: 0.711397, Acc: [0.8125]

7.2 加入正则化loss和Accuracy 

优化器采用Adam,并且设置参数weight_decay=10.0,即正则化的权重lambda =10.0

optimizer = optim.Adam(model.parameters(),lr=learning_rate,weight_decay=10.0)

这时,训练时输出的 loss和Accuracy信息:

step/epoch:0/0,Train Loss: 2.467985, Acc: [0.09375]
step/epoch:10/0,Train Loss: 5.435320, Acc: [0.40625]
step/epoch:20/0,Train Loss: 1.395482, Acc: [0.625]
step/epoch:30/0,Train Loss: 1.128281, Acc: [0.6875]
step/epoch:40/0,Train Loss: 1.135289, Acc: [0.6875]
step/epoch:50/0,Train Loss: 1.455040, Acc: [0.5625]
step/epoch:60/0,Train Loss: 1.023273, Acc: [0.65625]
step/epoch:70/0,Train Loss: 0.855008, Acc: [0.65625]
step/epoch:80/0,Train Loss: 1.006449, Acc: [0.71875]
step/epoch:90/0,Train Loss: 0.939148, Acc: [0.625]
step/epoch:100/0,Train Loss: 0.851593, Acc: [0.6875]
step/epoch:110/0,Train Loss: 1.093970, Acc: [0.59375]
step/epoch:120/0,Train Loss: 1.699520, Acc: [0.625]
step/epoch:130/0,Train Loss: 0.861444, Acc: [0.75]
step/epoch:140/0,Train Loss: 0.927656, Acc: [0.625]

当weight_decay=10000.0

step/epoch:0/0,Train Loss: 2.337354, Acc: [0.15625]
step/epoch:10/0,Train Loss: 2.222203, Acc: [0.125]
step/epoch:20/0,Train Loss: 2.184257, Acc: [0.3125]
step/epoch:30/0,Train Loss: 2.116977, Acc: [0.5]
step/epoch:40/0,Train Loss: 2.168895, Acc: [0.375]
step/epoch:50/0,Train Loss: 2.221143, Acc: [0.1875]
step/epoch:60/0,Train Loss: 2.189801, Acc: [0.25]
step/epoch:70/0,Train Loss: 2.209837, Acc: [0.125]
step/epoch:80/0,Train Loss: 2.202038, Acc: [0.34375]
step/epoch:90/0,Train Loss: 2.192546, Acc: [0.25]
step/epoch:100/0,Train Loss: 2.215488, Acc: [0.25]
step/epoch:110/0,Train Loss: 2.169323, Acc: [0.15625]
step/epoch:120/0,Train Loss: 2.166457, Acc: [0.3125]
step/epoch:130/0,Train Loss: 2.144773, Acc: [0.40625]
step/epoch:140/0,Train Loss: 2.173397, Acc: [0.28125]

7.3 正则化说明

就整体而言,对比加入正则化和未加入正则化的模型,训练输出的loss和Accuracy信息,我们可以发现,加入正则化后,loss下降的速度会变慢,准确率Accuracy的上升速度会变慢,并且未加入正则化模型的loss和Accuracy的浮动比较大(或者方差比较大),而加入正则化的模型训练loss和Accuracy,表现的比较平滑。并且随着正则化的权重lambda越大,表现的更加平滑。这其实就是正则化的对模型的惩罚作用,通过正则化可以使得模型表现的更加平滑,即通过正则化可以有效解决模型过拟合的问题。

8. 特征正则化

上面介绍了对于权重进行正则化的作用以及具体实现,其实在很多模型中,也会对特征采用L2归一化,有的时候在训练模型时,经过几个batch后,loss会变成nan,此时,如果你在特征后面加上L2归一化,可能可以很好的解决这个问题,而且有时会影响训练的效果,深有体会。
L2正则的原理比较简单,如下公式:

其中D为向量的长度,经过l2正则后xi 向量的元素平方和等于1

python实现

def l2norm(X, dim=-1, eps=1e-12):
    """L2-normalize columns of X
    """
    norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps
    X = torch.div(X, norm)
    return X

在SSD目标检测的conv4_3层便使用了L2Norm

对特征进行L2正则的具体作用如下:

  • 防止梯度消失或者梯度爆炸
  • 统一量纲,加快模型收敛

参考:

https://blog.csdn.net/b876144622/article/details/81276818

https://blog.csdn.net/baidu_32885165/article/details/110085688

https://blog.csdn.net/guyuealian/article/details/88426648

l1 相比于 l2 为什么容易获得稀疏解? - 知乎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1164595.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

在Linux上通过NTLM认证连接到AD服务器(未完结)

这篇文章目前还没有实现具体的功能&#xff0c;只实现了明文登录&#xff0c;因为我缺少一些数据&#xff0c;比如通过密码生成hash&#xff0c;以及通过challenge生成response&#xff0c;我不知道怎么实现&#xff0c;因此这篇文章也是一个交流的文章&#xff0c;希望大佬看见…

Linux的test测试功能

测试文件名的类型&#xff0c;文件是否存在&#xff0c; 文件的权限检测 文件之间的比较 两个整数之间的比较 判断字符串数据 多重条件判定 一个一个来&#xff0c;这个有点多&#xff0c;不过比较有意思&#xff0c;来代码 案例1&#xff0c;判断文件是否存在&#xff…

VS Code提取扩展时出错。XHR failed

需求&#xff1a;想要在扩展中心下载插件&#xff0c;发现报错 原因&#xff1a;vs code之前设置了代理&#xff0c;需要删除即可

【LLM】大模型中的温度系数temperature是啥玩意||底层逻辑

【LLM】大模型中的温度系数是啥玩意_山顶夕景的博客-CSDN博客 大佬两句话就讲明白了&#xff0c;厉害~ 总结一下就是crossentropy里面引入t如下页ppt公式所示&#xff0c;t越大&#xff0c;每个词都有更大的概率被使用&#xff0c;也就体现出了多样性。

基于OR-Tools的装箱问题模型求解(PythonAPI)

装箱问题 一、背包问题&#xff08;Knapsack problem&#xff09;1.1 0-1背包模型基于OR-Tools的0-1背包问题求解&#xff08;PythonAPI&#xff09;导入pywraplp库数据准备声明MIP求解器初始化决策变量初始化约束条件目标函数调用求解器打印结果 1.2 多重背包问题&#xff08;…

74X138元件怎么找——错误解决方法

1.在做74X138的时候根据课本&#xff0c;无法在现有的库中找到74X138&#xff0c;搜索了老师发的库中&#xff0c;都是集成库打不开&#xff0c;那我该怎么办? 根据这个课本P343&#xff0c;&#xff08;即机械工业出版社&#xff0c;刘超&#xff0c;包建荣&#xff0c;俞优姝…

深入理解TCP协议

深入理解TCP 1.TCP基础概念了解 1.1简介 TCP&#xff08;Transmission Control Protocol&#xff09;是一种计算机网络协议&#xff0c;用于在网络上可靠地传输数据。它确保数据的完整性、顺序性和可靠性&#xff0c;通过建立连接、数据分段、错误检测和恢复机制&#xff0c…

什么是DNS

什么是DNS 概述 域名系统&#xff08;英语&#xff1a;Domain Name System&#xff0c;缩写&#xff1a;DNS&#xff09;是互联网的一项服务。它作为将域名和IP地址相互映射的一个分布式数据库&#xff0c;能够使人更方便地访问互联网**。DNS使用[TCP和UDP端口53。当前&#…

【算法练习Day36】最后一块石头的重量 II目标和一和零

​&#x1f4dd;个人主页&#xff1a;Sherry的成长之路 &#x1f3e0;学习社区&#xff1a;Sherry的成长之路&#xff08;个人社区&#xff09; &#x1f4d6;专栏链接&#xff1a;练题 &#x1f3af;长路漫漫浩浩&#xff0c;万事皆有期待 文章目录 最后一块石头的重量 II目标…

2m照片用手机怎么照?三个方法随心选!

在用手机拍照的时候&#xff0c;我们会发现拍出的照片尺寸都很大&#xff0c;占用手机的存储空间较多&#xff0c;而自己又不需要如此高清晰度的照片&#xff0c;那么如何解决这个问题呢&#xff1f;下面介绍了三种方法。 方法一&#xff1a;调整手机拍照的设置选项 1、打开手…

Python---字符串切片-----序列名称[开始位置下标 : 结束位置下标 : 步长]

字符串切片&#xff1a;是指对操作的对象截取其中一部分的操作。字符串、列表、元组都支持切片操作。 本文以字符串为例。 基本语法&#xff1a; 顾头不顾尾&#xff1a; ----------类似range&#xff08;&#xff09; 范围&#xff0c;顾头不顾尾 相关链接Python----ran…

YOLOv5 - yolov5s.yaml 文件

基于深度学习的目标检测模型的结构:输入->主干->脖子->头->输出。主干网络提取特征&#xff0c;脖子提取一些更复杂的特征&#xff0c;然后头部计算预测输出。 YOLOv5网络结构主要由以下几部分组成: 骨干网络(Backbone) &#xff1a;Backbone:骨干网络&#xff0c…

JAVA虚拟机-第2章 Java自动内存管理-异常实践

Java堆溢出 堆的参数设置&#xff1a;将堆的最小值-Xms参数与最大值-Xmx参数设置 public class HeapOOM {static class OOMObject {}public static void main(String[] args) {List<OOMObject> list new ArrayList<OOMObject>();while (true) {list.add(new OO…

FRI及相关SNARKs的Fiat-Shamir安全

1. 引言 本文主要参考&#xff1a; Alexander R. Block 2023年论文 Fiat-Shamir Security of FRI and Related SNARKsAlbert Garreta 2023年9月在ZK Summit 10上分享 ZK10: Fiat-Shamir security of FRI and related SNARKs - Albert Garreta (Nethermind) 评估参数用的Sage…

【Git企业开发】第五节.远程操作

文章目录 前言一、理解分布式版本控制系统二、远程仓库 2.1 新建远程仓库 2.2 克隆远程仓库 2.3 向远程仓库推送 2.4 拉取远程仓库总结 前言 一、理解分布式版本控制系统 我们目前所说的所有内容(工作区&#xff0c;暂存区&#xff0c;版本库等等)&#x…

100G QSFP28 BIDI LR1光模块最新解决方案

上期文章我们有介绍到100G QSFP28 BIDI ER1 Lite光模块&#xff0c;本期内容我们将继续为大家介绍100G光模块系列的100G QSFP28 BIDI LR1光模块。这款产品同样也在易天ECOC光通讯展展出&#xff0c;下面跟着小易一起来看看吧&#xff01; 易天光通信的100G QSFP28 BIDI LR1单纤…

【Linux学习笔记】进程概念(中)

1. 操作系统的进程状态2. Linux操作系统的进程状态3. 僵尸进程4. 孤儿进程5. 进程优先级5.1. 优先级是什么和为什么要有优先级5.2. Linux中的进程优先级 6. 进程切换7. 环境变量7.1. 环境变量的认识7.2. 环境变量相关的命令7.3. 环境变量和本地变量7.4. 命令行参数7.5. 获取环境…

突破防火墙的一种方法

当Linux防火墙阻止来自某个ip的数据时&#xff0c;它应该是根据ip数据报里“源IP地址”字段取得的对方ip吧&#xff0c;那对方就不能通过篡改“源IP地址”来绕过防火墙吗&#xff1f;NAT模式下的路由器就修改了这个字段。 但这样的话&#xff0c;攻击者是收不到服务器返回的数…

通过内网穿透分享本地电脑上有趣的照片:部署piwigo网页

通过cpolar分享本地电脑上有趣的照片&#xff1a;部署piwigo网页 文章目录 通过cpolar分享本地电脑上有趣的照片&#xff1a;部署piwigo网页前言1.Piwigo2. 使用phpstudy网页运行3. 创建网站4. 开始安装Piwogo5. 设定一条内网穿透数据隧道6. 与piwigo网站绑定7. 在创建隧道界面…

k8s 多网卡方案multus

kubernetes 多网卡方案之 Multus_CNI 部署以及基本使用 一、multus cni 出现的背景 在k8s的环境中启动一个容器&#xff0c;默认情况下只存在两个虚拟网络接口&#xff08;loopback 和 eth0&#xff09;&#xff0c; loopback 的流量始终都会在本容器内或本机循环&#xff0c…