clusterprolifer go kegg msigdbr 富集分析应该使用哪个数据集,GO?KEGG?Hallmark?

news2024/11/23 23:51:12

关注微信:生信小博士 

5 Overview of enrichment analysis

Chapter 5 Overview of enrichment analysis | Biomedical Knowledge Mining using GOSemSim and clusterProfiler

5.1.2 Gene Ontology (GO)

Gene Ontology defines concepts/classes used to describe gene function, and relationships between these concepts. It classifies functions along three aspects:

  • MF: Molecular Function
    • molecular activities of gene products
  • CC: Cellular Component
    • where gene products are active
  • BP: Biological Process
    • pathways and larger processes made up of the activities of multiple gene products

GO terms are organized in a directed acyclic graph, where edges between terms represent parent-child relationship.

5.1.3 Kyoto Encyclopedia of Genes and Genomes (KEGG)

KEGG is a collection of manually drawn pathway maps representing molecular interaction and reaction networks. These pathways cover a wide range of biochemical processes that can be divided into 7 broad categories:

  1. Metabolism
  2. Genetic information processing
  3. Environmental information processing
  4. Cellular processes
  5. Organismal systems
  6. Human diseases
  7. Drug development.

5.1.4 Other gene sets

GO and KEGG are the most frequently used for functional analysis. They are typically the first choice because of their long-standing curation and availability for a wide range of species.

Other gene sets include but are not limited to Disease Ontology (DO), Disease Gene Network (DisGeNET), wikiPathways, Molecular Signatures Database (MSigDb).

富集分析的原理

Over Representation Analysis (ORA)和Gene Set Enrichment Analysis (GSEA)是用于分析基因表达数据的两种常见方法。ORA基于预定义的基因集,用超几何分布计算差异表达基因与该基因集中的基因数之间的显著性,适用于已知基因集和差异表达较大情况。GSEA考虑所有基因,根据基因在表型排序上的变化来寻找整个基因集是否显著富集,比ORA更适用于寻找微小但协调变化的基因集。GSEA还包括较新的leading edge analysis和core enriched genes等功能,能够帮助确定影响基因富集的关键基因。两种方法各有优缺点,在不同的研究问题中可以灵活选用。

5.2 原理1 Over Representation Analysis

Example: Suppose we have 17,980 genes detected in a Microarray study and 57 genes were differentially expressed. Among the differentially expressed genes, 28 are annotated to a gene set1.

d <- data.frame(gene.not.interest=c(2613, 15310), gene.in.interest=c(28, 29))
row.names(d) <- c("In_category", "not_in_category")
d

##                 gene.not.interest gene.in.interest
## In_category                  2613               28
## not_in_category             15310               29

Whether the overlap(s) of 25 genes are significantly over represented in the gene set can be assessed using a hypergeometric distribution. This corresponds to a one-sided version of Fisher’s exact test.

fisher.test(d, alternative = "greater")

 5.3 原理2 Gene Set Enrichment Analysis

ORA的方法,对于差异明显的对比结果较好,但是对于差异小的结果不好

A common approach to analyzing gene expression profiles is identifying differentially expressed genes that are deemed interesting. The ORA enrichment analysis is based on these differentially expressed genes. This approach will find genes where the difference is large and will fail where the difference is small, but evidenced in coordinated way in a set of related genes. Gene Set Enrichment Analysis (GSEA)(Subramanian et al. 2005) directly addresses this limitation. All genes can be used in GSEA; GSEA aggregates the per gene statistics across genes within a gene set, therefore making it possible to detect situations where all genes in a predefined set change in a small but coordinated way. This is important since it is likely that many relevant phenotypic differences are manifested by small but consistent changes in a set of genes.

Genes are ranked based on their phenotypes. Given apriori defined set of gene S (e.g., genes sharing the same DO category), the goal of GSEA is to determine whether the members of S are randomly distributed throughout the ranked gene list (L) or primarily found at the top or bottom.

There are three key elements of the GSEA method:

  • Calculation of an Enrichment Score.
    • The enrichment score (ES) represents the degree to which a set S is over-represented at the top or bottom of the ranked list L. The score is calculated by walking down the list L, increasing a running-sum statistic when we encounter a gene in S and decreasing when it is not encountered. The magnitude of the increment depends on the gene statistics (e.g., correlation of the gene with phenotype). The ES is the maximum deviation from zero encountered in the random walk; it corresponds to a weighted Kolmogorov-Smirnov(KS)-like statistic (Subramanian et al. 2005).
  • Esimation of Significance Level of ES.
    • The p-value of the ES is calculated using a permutation test. Specifically, we permute the gene labels of the gene list L and recompute the ES of the gene set for the permutated data, which generate a null distribution for the ES. The p-value of the observed ES is then calculated relative to this null distribution.
  • Adjustment for Multiple Hypothesis Testing.
    • When the entire gene sets are evaluated, the estimated significance level is adjusted to account for multiple hypothesis testing and also q-values are calculated for FDR control.

We implemented the GSEA algorithm proposed by Subramanian (Subramanian et al. 2005). Alexey Sergushichev implemented an algorithm for fast GSEA calculation in the fgsea (Korotkevich, Sukhov, and Sergushichev 2019) package. In our packages (clusterProfiler, DOSE, meshes and ReactomePA), users can use the GSEA algorithm implemented in DOSE or fgsea by specifying the parameter by="DOSE" or by="fgsea". By default, the fgsea method will be used since it is much more faster.

5.4 原理3 Leading edge analysis and core enriched genes

Leading edge analysis reports Tags to indicate the percentage of genes contributing to the enrichment score, List to indicate where in the list the enrichment score is attained and Signal for enrichment signal strength.

It would also be very interesting to get the core enriched genes that contribute to the enrichment. Our packages (clusterProfiler, DOSE, meshes and ReactomePA) support leading edge analysis and report core enriched genes in GSEA analysis.

详细的富集分析使用范围及其原理

1 GO 富集

GO comprises three orthogonal ontologies, i.e. molecular function (MF), biological process (BP), and cellular component (CC).

6.1 Supported organisms

GO analyses (groupGO()enrichGO() and gseGO()) support organisms that have an OrgDb object available (see also session 2.2).

If a user has GO annotation data (in a data.frame format with the first column as gene ID and the second column as GO ID), they can use the enricher() and GSEA() functions to perform an over-representation test and gene set enrichment analysis.

If the genes are annotated by direction annotation, they should also be annotated by their ancestor GO nodes (indirect annotation). If a user only has direct annotation, they can pass their annotation to the buildGOmap function, which will infer indirect annotation and generate a data.frame that is suitable for both enricher() and GSEA().

6.2 groupGo是 对基因的分类

In clusterProfiler, the groupGO() function is designed for gene classification based on GO distribution at a specific level. Here we use the dataset geneList provided by DOSE.

library(clusterProfiler)
data(geneList, package="DOSE")
gene <- names(geneList)[abs(geneList) > 2]

# Entrez gene ID
head(gene)

## [1] "4312"  "8318"  "10874" "55143" "55388" "991"
ggo <- groupGO(gene     = gene,
               OrgDb    = org.Hs.eg.db,
               ont      = "CC",
               level    = 3,
               readable = TRUE)

head(ggo)

6.3 enrichGO()是通过ORA对基因进行富集分析

The clusterProfiler package implements enrichGO() for gene ontology over-representation test.

ego <- enrichGO(gene          = gene,
                universe      = names(geneList),
                OrgDb         = org.Hs.eg.db,
                ont           = "CC",
                pAdjustMethod = "BH",
                pvalueCutoff  = 0.01,
                qvalueCutoff  = 0.05,
        readable      = TRUE)
head(ego)

gene.df <- bitr(gene, fromType = "ENTREZID",
        toType = c("ENSEMBL", "SYMBOL"),
        OrgDb = org.Hs.eg.db)

ego2 <- enrichGO(gene         = gene.df$ENSEMBL,
                OrgDb         = org.Hs.eg.db,
                keyType       = 'ENSEMBL',
                ont           = "CC",
                pAdjustMethod = "BH",
                pvalueCutoff  = 0.01,
                qvalueCutoff  = 0.05)
head(ego2, 3)    

6.4   gseGO() 是对基因集进行gsea分析,而GSEA是对基因列表基因gsea分析??

The clusterProfiler package provides the gseGO() function for gene set enrichment analysis using gene ontology.

ego3 <- gseGO(geneList     = geneList,
              OrgDb        = org.Hs.eg.db,
              ont          = "CC",
              minGSSize    = 100,
              maxGSSize    = 500,
              pvalueCutoff = 0.05,
              verbose      = FALSE)

The format of input data, geneList, was documented in the FAQ. Beware that only gene Set size in [minGSSize, maxGSSize] will be tested.

A.1 How to prepare your own geneList

GSEA analysis requires a ranked gene list, which contains three features:

  • numeric vector: fold change or other type of numerical variable
  • named vector: every number has a name, the corresponding gene ID
  • sorted vector: number should be sorted in decreasing order

If you import your data from a csv file, the file should contains two columns, one for gene ID (no duplicated ID allowed) and another one for fold change. You can prepare your own geneList via the following command:

d = read.csv(your_csv_file)
## assume 1st column is ID
## 2nd column is FC

## feature 1: numeric vector
geneList = d[,2]

## feature 2: named vector
names(geneList) = as.character(d[,1])

## feature 3: decreasing orde
geneList = sort(geneList, decreasing = TRUE)

7.2 KEGG pathway ORA

 Input ID type can be keggncbi-geneidncbi-proteinid or uniprot (see also session 16.1.2). Unlike enrichGO(), there is no readable parameter for enrichKEGG(). However, users can use the setReadable() function if there is an OrgDb available for the species.

data(geneList, package="DOSE")
gene <- names(geneList)[abs(geneList) > 2]

kk <- enrichKEGG(gene         = gene,
                 organism     = 'hsa',
                 pvalueCutoff = 0.05)
head(kk)
##                ID                                                   Description
## hsa04110 hsa04110                                                    Cell cycle
## hsa04114 hsa04114                                                Oocyte meiosis
## hsa04218 hsa04218                                           Cellular senescence
## hsa04061 hsa04061 Viral protein interaction with cytokine and cytokine receptor
## hsa03320 hsa03320                                        PPAR signaling pathway
## hsa04914 hsa04914                       Progesterone-mediated oocyte maturation
##          GeneRatio  BgRatio       pvalue     p.adjust       qvalue
## hsa04110     11/94 126/8142 1.829412e-07 3.841764e-05 3.774365e-05
## hsa04114     10/94 131/8142 2.368439e-06 2.486861e-04 2.443231e-04
## hsa04218     10/94 156/8142 1.135672e-05 7.949704e-04 7.810235e-04
## hsa04061      8/94 100/8142 1.821466e-05 9.562698e-04 9.394931e-04
## hsa03320      7/94  75/8142 2.285993e-05 9.601169e-04 9.432728e-04
## hsa04914      7/94 102/8142 1.651911e-04 5.781690e-03 5.680256e-03
##                                                      geneID Count
## hsa04110 8318/991/9133/890/983/4085/7272/1111/891/4174/9232    11
## hsa04114    991/9133/983/4085/51806/6790/891/9232/3708/5241    10
## hsa04218     2305/4605/9133/890/983/51806/1111/891/776/3708    10
## hsa04061           3627/10563/6373/4283/6362/6355/9547/1524     8
## hsa03320                 4312/9415/9370/5105/2167/3158/5346     7
## hsa04914                    9133/890/983/4085/6790/891/5241     7

7.3 KEGG pathway GSEA

kk2 <- gseKEGG(geneList     = geneList,
               organism     = 'hsa',
               minGSSize    = 120,
               pvalueCutoff = 0.05,
               verbose      = FALSE)
head(kk2)

##                ID                              Description setSize
## hsa05169 hsa05169             Epstein-Barr virus infection     193
## hsa04613 hsa04613  Neutrophil extracellular trap formation     130
## hsa05166 hsa05166  Human T-cell leukemia virus 1 infection     202
## hsa04510 hsa04510                           Focal adhesion     190
## hsa04218 hsa04218                      Cellular senescence     141
## hsa05170 hsa05170 Human immunodeficiency virus 1 infection     189
##          enrichmentScore       NES       pvalue     p.adjust      qvalues rank
## hsa05169       0.4335010  1.962039 5.505487e-08 4.239225e-06 2.839672e-06 2820
## hsa04613       0.4496569  1.934454 6.345081e-06 2.442856e-04 1.636363e-04 2575
## hsa05166       0.3893613  1.755469 1.357530e-05 3.484327e-04 2.333999e-04 1955
## hsa04510      -0.4169068 -1.691234 2.771385e-05 5.334917e-04 3.573629e-04 2183
## hsa04218       0.4115945  1.783044 5.168200e-05 7.959028e-04 5.331406e-04 1155
## hsa05170       0.3711150  1.677643 1.118012e-04 1.229814e-03 8.237986e-04 3178
##                            leading_edge
## hsa05169 tags=39%, list=23%, signal=31%
## hsa04613 tags=37%, list=21%, signal=30%
## hsa05166 tags=26%, list=16%, signal=22%
## hsa04510 tags=27%, list=17%, signal=22%
## hsa04218  tags=17%, list=9%, signal=16%
## hsa05170 tags=38%, list=25%, signal=29%
##                                                                                                                                                                                                                                                                                                                                                                                core_enrichment
## hsa05169 3627/890/6890/9636/898/9134/6502/6772/3126/3112/4609/917/5709/1869/3654/919/915/4067/4938/864/4940/5713/5336/11047/3066/54205/1871/578/1019/637/916/3383/4939/10213/23586/4793/5603/7979/7128/6891/930/5714/3452/6850/5702/4794/7124/3569/7097/5708/2208/8772/3119/5704/7186/5971/3135/1380/958/5610/4792/10018/8819/3134/10379/9641/1147/5718/6300/3109/811/5606/2923/3108/5707/1432
## hsa04613                                                                                                                                      820/366/51311/64581/3015/85236/55506/8970/8357/1535/2359/5336/4688/92815/3066/8336/292/1991/3689/8345/5603/4689/5880/10105/1184/6404/3018/6850/5604/3014/7097/1378/8290/1536/834/5605/1183/728/2215/8335/5594/9734/3674/5578/5582/7417/8331/6300
## hsa05166                                                                                                                      991/9133/890/4085/7850/1111/9232/8061/701/9700/898/4316/9134/3932/3559/3126/3112/4609/3561/917/1869/1029/915/114/2005/5902/55697/1871/1031/2224/292/1019/3689/916/3383/11200/706/3600/6513/3601/468/5604/7124/1030/3569/4049/4055/10393/3119/5901/5971/1959/3135
## hsa04510                                                                                                                   5595/5228/7424/1499/4636/83660/7059/5295/1288/23396/3910/3371/3082/1291/394/3791/7450/596/3685/1280/3675/595/2318/3912/1793/1278/1277/1293/10398/55742/2317/7058/25759/56034/3693/3480/5159/857/1292/3908/3909/63923/3913/1287/3679/7060/3479/10451/80310/1311/1101
## hsa04218                                                                                                                                                                                                                                                                 2305/4605/9133/890/983/51806/1111/891/993/3576/1978/898/9134/4609/1869/1029/22808/1871/5499/91860/292/1019/11200/1875
## hsa05170                   9133/9582/983/51806/1111/891/6890/200315/917/3654/919/915/5336/54205/91860/578/995/25939/637/1234/916/5603/2792/5880/6891/6921/3452/5604/7124/9978/7097/7852/8772/1174/7186/3135/164/60489/2787/356/7133/5605/27350/6199/1642/5594/4792/3134/5578/4893/8454/5582/2786/1147/3984/6300/200316/811/5606/2923/4775/162/1432/2784/836/5747/5058/3106/2770/5534/5579/4615

7.4 KEGG module ORA. 这里的module指的是msigdb种收集的其他kegg内容,共有

KEGG Module is a collection of manually defined function units. In some situation, KEGG Modules have a more straightforward interpretation.

mkk <- enrichMKEGG(gene = gene,
                   organism = 'hsa',
                   pvalueCutoff = 1,
                   qvalueCutoff = 1)
head(mkk)       

3.KEGG 分类备注

KEGG Pathway可以进行分类汇总。

在KEGG官网(KEGG PATHWAY Database)中,将通路分成了7类:

1. Metabolism (代谢)

2. Genetic Information Processing (遗传信息处理)

3. Environmental Information Processing (环境信息处理)

4. Cellular Processes (细胞过程)

5. Organismal Systems (生物系统)

6. Human Diseases (人类疾病)

7. Drug Development (药物开发)

做出一个分类汇总图,这样可以在更上一层级研究pathway。主要应用于特殊物种的denovo测序注释,也可以应用于我们常规的pathway富集分析。

7.5 KEGG module gene set enrichment analysis

mkk2 <- gseMKEGG(geneList = geneList,
                 organism = 'hsa',
                 pvalueCutoff = 1)
head(mkk2)

通路可视化

library("pathview")
hsa04110 <- pathview(gene.data  = geneList,
                     pathway.id = "hsa04110",
                     species    = "hsa",
                     limit      = list(gene=max(abs(geneList)), cpd=1))

browseKEGG(kk, 'hsa04110')

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1161962.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

毕业生求职,需要做哪些准备工作?

第一、了解企业招聘需求&#xff0c;不同岗位除了对应的专业知识以为&#xff0c;还需要了解岗位的特点&#xff0c;比如&#xff1a;销售类型的工作&#xff0c;口才要好&#xff0c;逻辑要强。如果你懂技术&#xff0c;但是羞于表达&#xff0c;都是无法胜任的。结合自身性格…

ztree调整节点间距及一般使用

1.基本介绍 树形结构菜单的功能属于非常常见的一种菜单交互&#xff0c;本人先后也使用过多种树形结构的插件&#xff0c;有 ztree、xloadtree、treeview、datagrid-tree 等等等等。近期有个功能恰好又要使用tree菜单了&#xff0c;由于可自行选择使用的组件&#xff0c;所以略…

简单工厂模式、工厂方法模式、抽象工厂模式

简介 将实例化代码提取出来&#xff0c;放到一个类中统一管理和维护&#xff0c;达到和主项目依赖关系的解耦&#xff0c;从而提高项目的扩展性和维护性。 工厂模式将复杂的对象创建工作隐藏起来&#xff0c;而仅仅暴露出一个接口供客户使用&#xff0c;具体的创建工作由工厂管…

Axie Infinity 超级任务远超预期,和 YGG 一起探索 Web3 增长新方式!

参与超级任务的实际人数是预期人数的两倍。 超级任务将新玩家引入 Web3 游戏领域&#xff0c;并向他们介绍可以为其玩家旅程提供支持的社区。 Axie Infinity 超级任务旨在向新手和 Axie Classic 老 玩家介绍「Axie Infinity&#xff5c;起源」这款游戏。 整个活动共吸引了 4,…

Luminar Neo Mac/Windows中文版:引领AI图像编辑的革命性时代

Luminar Neo运用先进的AI技术&#xff0c;能够自动化地完成许多繁琐的编辑任务&#xff0c;如色彩校正、噪点消除、人脸识别等。这不仅大大提高了工作效率&#xff0c;同时也降低了对专业知识和技能的要求。无论你是专业摄影师&#xff0c;还是摄影爱好者&#xff0c;甚至是一个…

python写爱心代码【爱心代码编程python可复制粘贴】

python写爱心代码【爱心代码编程python可复制粘贴】 python程序代码&#xff1a;heart.py from math import cos, pi import numpy as np import cv2 import os, glob class HeartSignal: def __init__(self, curve"heart", title"Love U", frame_n…

程序员用接单平台靠谱吗?浅谈一下十年程序员的看法

后疫情时代&#xff0c;经济下行&#xff0c;这年头社会上就业也越来越卷了&#xff0c;程序员人才市场也日趋饱和。不少人嗅到危险气息&#xff0c;已经开始谋求出路了! 咱们程序员的话&#xff0c;“兼职”"接单"也不是个新鲜的话题了。养家糊口也好、财富自由也罢…

优优嗨聚集团:医保新政来袭,乙类OTC、保健品或将退出医保舞台,影响几何?

近日&#xff0c;国家医保局发布征求意见稿&#xff0c;拟将乙类OTC&#xff08;非处方药&#xff09;和保健品从医保目录中移除。这一政策一旦实施&#xff0c;无疑将对广大参保人员和相关企业产生深远影响。本文将为您详细解析这一政策可能带来的影响&#xff0c;以及如何应对…

19.3 Boost Asio 多线程通信

多线程服务依赖于两个通用函数&#xff0c;首先boost::bind提供了一个高效的、简单的方法来创建函数对象和函数对象适配器&#xff0c;它的主要功能是提供了一种将函数和它的参数绑定到一起的方法&#xff0c;这种方法可以将具有参数的成员函数、普通函数以及函数对象转化为不带…

日常笔记工具搭档(Typora、Snipaste)

一、Typora 啥也不说了直接上图 Markdown语法 Typora免费版 提取码&#xff1a;av01 二维码&#xff1a; 1&#xff09;页面展示 2&#xff09;主题 3&#xff09;偏好设置 4&#xff09;Markdown语法设置偏好 5&#xff09;编辑器 6&#xff09;系统 二、Snipaste Snipaste…

中国电子云-隐私计算-云原生安全可信计算,物理-硬件-系统-云产品-云平台,数据安全防护

目录 联邦学习的架构思想 中国电子云-隐私计算-云原生安全 可信计算&#xff0c;物理-硬件-系统-云产品-云平台&#xff0c;数据安全防护 全栈国产信创的意义 1. 提升科技创新能力 2. 推动经济发展 3. 加强信息安全与自主可控 全栈国产信创的重要领域 1. 人工智能 2.…

Nginx简介,Nginx搭载负载均衡以及Nginx部署前端项目

目录 一. Nginx简介 Nginx的优点 二. Nginx搭载负载均衡 2.1 Nginx安装 2.1.1 安装依赖 2.1.2 解压nginx安装包 2.1.3 安装nginx 2.1.4 启动nginx服务 2.2 tomcat负载均衡 2.3 Nginx配置 三. Nginx前端部署 一. Nginx简介 NGINX&#xff08;读作&#xff1a;engi…

阿里云2023年双十一活动各云产品活动内容及优惠政策汇总

阿里云2023双十一活动各云产品有哪些新购和续费优惠政策&#xff1f;小编看了一下阿里云2023年的双十一活动&#xff0c;活动分为主会场和8个云产品分会场&#xff0c;涉及的云产品涵盖了云服务器、云数据库、云存储、云网络、大数据Al、云原生、云安全等几乎所有阿里云产品&am…

技能get-ps抠颜色一样的图

公司要插个小图片&#xff0c;从网上down下来的图片是不过是jpg的&#xff0c;背景不透明&#xff0c;这时候可以使用ps工具把这种同一颜色的内容扣下来。 操作步骤&#xff1a; 选择-色彩范围&#xff0c;然后用取样器取颜色&#xff0c;再调节拉条选取颜色范围&#xff0c;最…

客户收到样品后“消失”,怎么破?

对于大部分外贸人来说&#xff0c;谈客户几乎不是一次性谈成的&#xff0c;而是要进行多次的沟通。在沟通过程中难免会遇到各种问题&#xff0c;一些小问题容易解决&#xff0c;但有一些棘手的问题却不知该如何下手。 比如&#xff1a; ①客户收到样品后就“消失”&#xff0c…

某数据库为提升搜索效率,对某一整型字段构建二叉搜索树(BST)

声明&#xff1a;下面的方法不一定正确&#xff0c;个人学习过程中所写&#xff0c;并未做大量测试&#xff0c;仅供参考&#xff0c;应该有BUG&#xff0c;暂时不改了。 描述&#xff1a;某数据库为提升搜索效率&#xff0c;对某一整型字段构建二叉搜索树(BST)。每个结点包含…

07、vue : 无法加载文件 C:\Users\JH\AppData\Roaming\npm\vue.ps1,因为在此系统上禁止运行脚本。

目录 问题解决&#xff1a; 问题 vue : 无法加载文件 C:\Users\JH\AppData\Roaming\npm\vue.ps1&#xff0c;因为在此系统上禁止运行脚本。 在使用 VSCode 时&#xff0c;创建 Vue 项目报的错 创建不了 Vue 项目 解决&#xff1a; 因为在此系统上禁止运行该脚本&#xff0…

[ 云计算 | AWS 实践 ] 使用 Java 列出存储桶中的所有 AWS S3 对象

本文收录于【#云计算入门与实践 - AWS】专栏中&#xff0c;收录 AWS 入门与实践相关博文。 本文同步于个人公众号&#xff1a;【云计算洞察】 更多关于云计算技术内容敬请关注&#xff1a;CSDN【#云计算入门与实践 - AWS】专栏。 本系列已更新博文&#xff1a; [ 云计算 | …

利用工业视频AI分析,能否消除企业生产安全隐患?

讲个去年11月的案例&#xff0c;某家工厂发生火灾&#xff0c;直接导致38人死亡和2人受伤。然后在今年2月&#xff0c;某家新能源汽车公司发生机械伤害事故&#xff0c;导致1人死亡。4月&#xff0c;一家船厂发生生产安全事故&#xff0c;造成7人死亡和5人受伤。5月&#xff0c…

5.4 可靠传输的工作原理

思维导图&#xff1a; 5.4 可靠传输的工作原理 前言概述 TCP与IP层的关系&#xff1a;TCP负责发送报文段&#xff0c;而IP层负责传送这些报文段。IP层仅提供“尽最大努力服务”&#xff0c;本质上是不可靠的传输。TCP的责任&#xff1a;为了弥补IP层的不可靠性&#xff0c;TC…