在基于亚马逊云科技的湖仓一体架构上构建数据血缘的探索和实践

news2024/11/26 23:39:28

1d77e80175705d85bdbd20f8da326199.gif

背景介绍

随着大数据技术的进步,企业和组织越来越依赖数据驱动的决策。数据的质量、来源及其流动性因此显得非常关键。数据血缘分析为我们提供了一种追踪数据从起点到终点的方法,有助于理解数据如何被转换和消费,同时对数据治理和合规性起到关键作用。特别是在 DSL(Data Security Law,数据安全法)和 PIPL(Personal Information Protection Law,个人信息保护法)等数据隐私法规的背景下,这种分析确保了数据的合规性,减少了法律风险。

但数据血缘在收集阶段存在诸多挑战,如数据来源的多样性、数据流的混合、数据质量等问题。尤其在数据湖与数据仓库结合的湖仓一体架构下,这些问题更为复杂。数据湖中的数据格式多样,从半结构化到非结构化,而数据仓库主要针对结构化数据。因此,跨多个系统和工具追踪数据路径、统一不同的日志和元数据,都成为了巨大的挑战。

数据血缘,简而言之,是对数据从其来源到其最终目的地的整个生命周期的追踪和可视化。在当前数据驱动的时代,数据血缘已经成为数据管理和数据治理的关键组成部分。数据血缘的意义:

  • 透明性:数据血缘为组织提供了数据流的完整视图,使得数据工程师、分析师和业务用户都能清楚地了解数据的来源和转换过程。

  • 增强信任:当组织能够清晰地追踪数据的来源和流动,它可以增强内部和外部利益相关者对数据的信任。

  • 提高效率:数据问题可以迅速定位和解决,因为数据血缘提供了数据流的详细视图,从而减少了故障排查的时间。

  • 支持创新:当数据可访问且其来源和质量都已知时,组织可以更自信地进行数据驱动的创新。

本文会为您介绍在湖仓一体架构下,如何将亚马逊云科技的数据湖 Amazon S3 在数据 ETL 处理过程中通过 Spline 捕获并产生在图数据库 ArangoDB 中的数据血缘和数据仓库 Amazon Redshift 通过 DBT 产生的数据血缘进行合并,并使用图数据库 Amazon Neptune 通过 DAG 图进行可视化展示。

架构设计

在大数据时代,湖仓一体架构逐渐成为数据管理的前沿。这种架构继承了数据湖和数据仓库的长处,为企业提供了一个集中、灵活、高效的数据存储和分析平台。这种架构使得结构化与非结构化数据能够在同一环境中无缝整合,从而消除了数据孤岛现象并提高了数据访问的一致性。同时,得益于云技术,湖仓一体具备了卓越的弹性和可扩展性,轻松应对数据的爆炸式增长。而数据湖的经济存储方式和数据仓库的高速查询性能的结合,进一步确保了企业在大数据处理上的成本效益。

在这样的背景下,使用 Amazon MWAA 基于 Amazon S3,Amazon Glue,Amazon Redshift,DBT 构建 data pipeline,并实现自动化的端到端的数据 ETL 处理,数据建模,以及数据可视化成为一种比较常见的架构实现方式。如下图所示,整个架构实现包括三个组成部分:第一部分,通过 Amazon Glue 实现数据从 data source 到 data staging 再到 data lake。第二部分,通过 DBT 基于Amazon Redshift 进行数据建模。第三部分,通过 Amazon MWAA 实现对 Amazon Glue 和 DBT 的自动化调度。

3bf534e49ebf57ae7fd5c2c46bf0188d.png

如本文开头所述,在这样的架构设计下,数据血缘的收集是非常重要的,同时也面临着比较大的挑战。为了解决这个问题,本文采取了分段搜集,再进行数据血缘合并以及可视化呈现。其中通过 Amazon Glue 运行数据 ETL 的部分,采用了 Spline 进行数据血缘的收集,使用 DBT 在 Amazon Redshift 数据建模的部分,通过 DBT 的 Document 功能获取了血缘数据,数据血缘的合并以及可视化,在图数据库 Amazon Neptune 中完成。

d75ffe4787ccec95e661da0330fa0d4f.png

什么是 Spline?

Spline 即 Spark Lineage,是一个专注 Spark 的数据血缘追踪工具,Spline 的目标是创建一种简单且高效的方法捕获 Spark 血缘,同时提供 API,方便第三方去扩展和开发。

Spline 在架构上可以分为四部分:

  • Spline Server

  • Spline Agent

  • ArangoDB

  • Spline UI

Spline Server 是 Spline 的核心。它通过 producer api 接收来自 agent 的血缘数据,并将其存储在 ArangoDB 中。另一方面,它为读取和查询血缘数据提供了 Consumer API。消费者 API 由 Spline UI 使用,但也可以由第三方应用程序使用。

Spline Agent 从数据转换管道中捕获沿血缘和元数据,并通过使用 HTTP API(称为 Producer API),以标准格式将其发送到 Spline server,最终血缘数据被处理并以图的形式存储,并且可以通过另一个 REST API(称为 Consumer API)访问。

ArangoDB 是一个原生多模型数据库,兼有 key/value 键/值对、graph 图和 document 文档数据模型,提供了涵盖三种数据模型的统一的数据库查询语言,并允许在单个查询中混合使用三种模型。基于其本地集成多模型特性,您可以搭建高性能程序,并且这三种数据模型均支持水平扩展。

Spline UI 是可视化渲染数据血缘的 endpoint,可以按 application 绘制作业的表血缘,字段血缘,以及每一个 stage 的输入输出 schema。

什么是 DBT?

DBT(Data Build Tool)是一个开源软件,用于转换和加载数据仓库中的数据。它允许数据工程师和分析师编写、维护和测试 SQL 查询,从而实现数据的转换和建模。DBT 提供了一个框架,使用户能够使用版本控制、测试和文档化来管理 SQL 代码。它与现代云数据仓库如 Snowflake、EMR 和 Redshift 等紧密集成,使得数据团队可以更加高效地进行数据转换和分析。DBT 的主要目标是将数据从源系统转换为易于分析的结构,同时确保数据的质量和准确性。

什么是 Neptune?

Amazon Neptune 是亚马逊云科技发布的一款托管图数据库产品,它支持流行的图模型,如属性图和 W3C 的 RDF,以及相应的查询语言,如 Apache TinkerPop 的 Gremlin、openCypher 和 SPARQL。Neptune 旨在为高度连接的数据集构建查询,提供高性能的图模型处理。它与其他亚马逊云科技产品如 Amazon S3、Amazon EC2 和 Amazon CloudWatch 等紧密集成,确保数据安全和高效处理。

在本方案中,Spline 的血缘数据保存在 ArangoDB 的 Collection 中,DBT 的血缘数据保存在 manifest.json 中。由于 ArangoDB 是一种图数据库,并且遵循了和图数据库 Amazon Neptune 不同的协议,使用了和 Amazon Neptune 不同的数据结构,而且目前没有工具可以实现 ArangoDB 到 Amazon Neptune 的直接数据导入,因此本方案通过数据解析将 ArangoDB 的 Collection 和 DBT 的血缘数据进行转换,生成中间文件后,在 Amazon Neptune 图数据库进行了数据血缘的合并。

方案介绍

1、 Spline 搭建

1)我们采用在 EC2 上以 docker compose 的方式容器化部署 Spline,需提前安装好 Docker 和 Compose。也可以参考这篇亚马逊云科技博客中介绍的在亚马逊云上部署 Spline 的详细例子。

  • 博客链接:

    https://aws.amazon.com/cn/blogs/china/using-spline-to-collect-spark-data-kinship-practice/?nc1=h_ls

部署完成后,通过 Amazon Glue 构建一个 Job,启动 Spline UI 查看血缘数据,我们看到 Spline 分为 Execution Events,Data Sources,Execution Plans 几个部分。

8158cb23ba4c0aa30389c4656957ae69.png

2)点击一个测试生成的 Execution event,可以看到 Spline 采集的数据血缘 DAG 图。

2124f35695f24073ffd1c2e2ee305bdc.png

3)测试场景的数据最终会从 Amazon S3 的 sales_dl 目录写入 Amazon Redshift 的 sales 表,由于 Spline 和 Amazon Redshift 集成存在一些限制,生成的血缘数据无法直接看到目标表名。这里考虑到 Amazon S3 在向 Amazon Redshift 写入数据时,会先写入到一个临时目录,通过这个特点进行数据解析获取到了完整的数据血缘信息。

98f367fc01df54200da9d91064249652.png

2、 ArangoDB 数据结构以及数据解析

Spline 每次生成数据血缘时,会向 ArangoDB 写入一条 Log 信息,并保存在 22 个 collection 中,如下图所示:

442aef48113078e577640df7b7adfb9f.png

通过数据解析 ArangoDB 的 collection 之间的数据关系,得到在 Spline 中看到的数据血缘信息。在本示例中,根据业务场景的需要,使用了其中的 operation 和 executionPlan 两个 collection 。本方案不着重介绍如何读取 ArangoDB,为方便演示,暂时直接把 json 数据保存成文件后进行解析,具体请参考文件 operation.json 和 executionPlan.json。

  •  operation.json

    https://github.com/Honeyfish20/data-lineage-demo/blob/main/arangodb/operation.json

  • executionPlan.json

    https://github.com/Honeyfish20/data-lineage-demo/blob/main/arangodb/executionPlan.json

通过数据解析在 ArangoDB 的 executionPlan 文件中获取与 Glue Job 对应的唯一的 appName,该 appName 会根据业务场景的不同,对应到 Spline 的一条或者多条 Execution event。找到相互关联的 Execution event,并通过数据解析在 ArangoDB 的 operation 文件中获取数据的上下游关系。最后,通过 Amazon S3 的文件存储路径,判断 Amazon S3 写往 Amazon Redshift 的数据血缘,生成中间文件 spline_lineage_map.json,供 Amazon Neptune 进行数据血缘合并。本示例中的中间文件 spline_lineage_map.json 参考。

  •  spline_lineage_map.json 参考:

    https://github.com/Honeyfish20/data-lineage-demo/blob/main/spline/spline_lineage_map.json.json

import json
import os


def fetch_target_ids(execution_plan_path, target_name):
    target_ids = []
    with open(execution_plan_path, 'r') as f:
        execution_plans = json.load(f)
    for plan in execution_plans:
        if plan.get('name') == target_name:
            target_ids.append(plan['_id'])
            print(f"Found target ID: {plan['_id']}")
    return target_ids


def filter_operations(operation_path, target_ids):
    filtered_operations = []
    with open(operation_path, 'r') as f:
        operations = json.load(f)
    for operation in operations:
        if operation.get('_belongsTo') in target_ids and operation.get('type') in ['Read', 'Write']:
            filtered_operations.append(operation)
            print(f"Filtered operation: {operation}")
    return filtered_operations


def generate_and_transform_result_dict(filtered_operations):
    new_data = {'lineage_map': {}}
    read_file_name, write_file_name = None, None  
    read_belongs_to, write_belongs_to = None, None  


    for operation in filtered_operations:
        belongs_to = operation.get('_belongsTo')
        operation_type = operation.get('type')


        if operation_type == 'Read':
            input_source = operation.get('inputSources', [])[0] if operation.get('inputSources') else None
            read_file_name = os.path.basename(input_source) if input_source else None
            read_belongs_to = belongs_to  


        elif operation_type == 'Write':
            output_source = operation.get('outputSource')
            write_file_name = os.path.basename(output_source) if output_source else None
            write_belongs_to = belongs_to  


        if read_file_name and write_file_name and read_belongs_to == write_belongs_to:
            if read_file_name not in new_data['lineage_map']:
                new_data['lineage_map'][read_file_name] = []
            new_data['lineage_map'][read_file_name].append(write_file_name)


    return new_data
      
def fetch_redshift_table(filtered_operations, new_data):
    redshift_table = None
    for operation in filtered_operations:
        output_source = operation.get('outputSource', '')
        if 'redshift' in output_source:
            redshift_table = output_source.split('/')[-2]  
            print(f"Redshift table extracted from outputSource: {redshift_table}")


    if redshift_table:
        last_data_flow_file = None
        for key in reversed(list(new_data['lineage_map'].keys())):
            if new_data['lineage_map'][key]:
                last_data_flow_file = new_data['lineage_map'][key][-1]
                break


        if last_data_flow_file:
            new_key = f"{last_data_flow_file}" 
            new_data['lineage_map'][new_key] = [redshift_table]          


if __name__ == "__main__":
    execution_plan_path = "/path/to/executionPlan.json"
    operation_path = "/path/to/operation.json"
    target_name = 'Your appName in executionPlan.json'


    target_ids = fetch_target_ids(execution_plan_path, target_name)
    filtered_operations = filter_operations(operation_path, target_ids)
    new_data = generate_and_transform_result_dict(filtered_operations)
    fetch_redshift_table(filtered_operations, new_data)  


    with open("/path/to/spline_lineage_map.json", 'w') as f:
        json.dump(new_data, f, indent=4)


    print(f"New JSON data has been written to /path/to/spline_lineage_map.json")

左滑查看更多

3、DBT 数据血缘解析

上述 Amazon Glue 作业执行后会将处理好的数据写入到 Amazon Redshift 的 public.sales 表,DBT 项目采用 sales 表和 event 表作为数据源进行后续的建模,最终生成 top_events_by_sales 表,DBT 原生的数据血缘参考如下:

fb560528ac9fc548850b13ac4db75d34.png

运行以下命令可为 DBT 项目生成文档,DBT 项目下的 target 目录中的 manifest.json 文件存储了数据血缘相关信息,本示例中 manifest.json 参考。

dbt docs generate

可以通过解析 manifiest.json 文件中的 parent_map 或者 child_map 还原 DBT 的数据血缘,下面的代码示例解析 child_map 并生成中间文件 dbt_lineage_map.json 文件来描述 DBT 数据血缘。

  • manifest.json 参考:

    https://github.com/Honeyfish20/data-lineage-demo/blob/main/dbt/manifest.json

  • dbt_lineage_map.json:

    https://github.com/Honeyfish20/data-lineage-demo/blob/main/dbt/dbt_lineage_map.json

import json


dbt_sources = {}
dbt_models = {}
child_map = {}
lineage_map = {}


def get_node_name(node_name):
    if node_name.startswith("source"):
        return dbt_sources[node_name]["name"]  
    if node_name.startswith("model"):
        return dbt_models[node_name]["name"]


with open("manifest.json") as f:
     data = json.load(f)


dbt_sources = data["sources"]
dbt_models = data["nodes"]
child_map = data["child_map"]


for item in child_map:
    parent_name = get_node_name(item)
    child_list = []
    for i in range(len(child_map[item])):
        child_name = get_node_name(child_map[item][i])
        child_list.append(child_name)
   
    if len(child_list) > 0:
        lineage_map[parent_name] = child_list


dbt_lineage_map["lineage_map"] = lineage_map


with open('dbt_lineage_map.json', 'w') as f:
    content = json.dumps(dbt_lineage_map)
    f.write(content)

左滑查看更多

4、 将 Spline 和 DBT 的数据血缘

合并到 Amazon Neptune


解析本方案中前面步骤生成的中间文件,即 Spline 和 DBT 的数据血缘文件 spline_lineage_map.json 和 dbt_lineage_map.json,将两端的数据血缘插入 Amazon Neptune 进行拼接。代码示例参考如下:

from gremlin_python.process.anonymous_traversal import traversal
from gremlin_python.driver.driver_remote_connection import DriverRemoteConnection
from gremlin_python.process.traversal import T


def build_data_lineage(data_lineage_map):
    for node in data_lineage_map:
        if not g.V().hasLabel('lineage_node').has('node_name',node).hasNext():
            g.addV('lineage_node').property('node_name', node).next()
        for i in range(len(data_lineage_map[node])):
            child_node = data_lineage_map[node][i]
            if not g.V().hasLabel('lineage_node').has('node_name',child_node).hasNext():
                g.addV('lineage_node').property('node_name', child_node).next()
            g.V().has('node_name', node).addE('lineage_edge').property('edge_name',' ').to(__.V().has('node_name',child_node)).next()


connection = DriverRemoteConnection('wss://{neptune cluster endpoint}:8182/gremlin', 'g')
g = traversal().withRemote(connection)


with open("spline_lineage_map.json") as f:
     spline_lineage_map = json.load(f)


with open("dbt_lineage_map.json") as f:
     dbt_linage_map = json.load(f)


build_data_lineage(spline_lineage_map["lineage_map"])
build_data_lineage(dbt_lineage_map["lineage_map"])


remoteConn.close()

左滑查看更多

最后启动 Amazon Neptune Notebook,可视化查询最终合并好的完整的数据血缘图:

%%gremlin -d node_name -de edge_name
g.V().outE().inV().path().by(elementMap())

左滑查看更多

查询效果如下:

caf97b58070b2d689143de4e1ff4be62.png

后期展望

本方案从技术角度提供了集成 Spline 和 DBT 数据血缘的解决方案以及原型验证,在实际环境中应用此方案需要在此基础上引入工程化的能力:

  • 1、Spline 的数据血缘存储在 ArangoDB 中,DBT 数据血缘文件存储在项目路径的 target 目录中,即上面提到的 manifest.json 文件,通常会通过 DataOps 发布到 Amazon S3 上。Amazon MWAA 作为此方案的顶层调度框架,Amazone Glue 和 DBT 作业执行完成后,可以实现额外的任务读取 ArangoDB 和 S3 文件,结合本方案中的示例代码,实现两端数据血缘的自动化集成。

  • 2、在实际场景中,可能存在多个环境,如开发、测试、生产等,此时可以为不同环境创建单独的 Amazon Neptune 实例进行环境隔离。同时在同一个环境中,如果有多个 Amazon MWAA 调度作业,在一些极端的情况下,这些作业中可能存在部分相同的上下游结点。此时在同一个环境中写入数据血缘时,可考虑根据 Spline 在 ArangoDB 生成的 appName 和最新的时间查询出当前 DAG 执行后的血缘数据,当和 DBT 进行数据血缘合并时,利用全局标识比如 Amazon MWAA 的 DAG 名称等信息作为图数据库的结点属性,使得后续能够灵活的查询出符合业务实际情况的数据血缘关系图。

  • 3、Spline 和 DBT 原生的数据血缘信息中,都包含数据血缘结点的类型,如文件、Table、View 等。在代码解析过程中,也可以将结点类型提取到临时的中间 Json 文件中,将结点类型作为 Label 写入到 Amazon Neptune 中,从而实现更加灵活的查询,以及更好的可视化效果,如一些主流的可视化查询工具,会根据结点 Label 显示为不同的颜色加以区分。

  • 4、在复杂的业务场景下,Amazon Glue job 会在 Spline 会生成更多的 execution plan,并且每一个 execution plan 的数据关系 ,也会更加复杂,会产生更多的分支,呈现出更为复杂的树形结构,这种情况下,则需要考虑使用更多 ArangoDB 的 collation 文件,进行数据解析,包括使用 collection 文件 follows,去更加精准的判断每一个 execution plan 中的 operation 不同的 action 之间的执行先后次序,以及使用 collection 文件 attribute,通过不同的 execution Plan 的数据上下游之间的字段关系,解析出数据血缘。

  • 5、Amazon S3 向 Amazon Redshift 的数据写入有多种方式,可以基于 Dynamic Frame 的方式,也可以使用 Spark Redshift connector,Spline 是 Spark 的一个组件,使用 Spark Redshift connector 或许可以提供更好的兼容性,在真实的场景中,Amazon Glue 从 Amazon S3 向 Amazon Redshift 中写入数据的场景也会更为复杂,未来可以尝试基于 Amazon Glue 4.0 使用 Spark Redshift connector 实现 Amazon S3 向 Amazon Redshift 的数据写入,收集更为丰富的数据血缘信息。

本篇作者

22729348389de35f07258a2aa35321b8.jpeg

吴楠

亚马逊云科技解决方案架构师,负责面向跨国企业客户的云计算方案架构咨询和设计,客户覆盖医疗,零售等行业。

70a3bf908ecf3078b4aa89c707be3107.jpeg

孙大木

亚马逊云科技资深解决方案架构师,负责基于亚马逊云科技云计算方案架构的咨询和设计,在国内推广亚马逊云科技云平台技术和各种解决方案。

fe6f20e60f98c0ec4284a550ffdc2a6e.gif

星标不迷路,开发更极速!

关注后记得星标「亚马逊云开发者」

11fd75ee5c9387bfc70d1f839f8a77bb.gif

听说,点完下面4个按钮

就不会碰到bug了!

cba7e9f6145cbbb2f879844c638386f8.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1160782.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Ajax学习笔记第8天

放弃该放弃的是无奈,放弃不该放弃的是无能,不放弃该放弃的是无知,不放弃不该放弃的是执着! 【1. 聊天室小案例】 文件目录 初始mysql数据库 index.html window.location.assign(url); 触发窗口加载并显示指定的 url的内容 当前…

TSINGSEE青犀特高压输电线可视化智能远程监测监控方案

一、背景需求分析 特高压输电线路周边地形复杂,纵横延伸几十甚至几百千米,并且受所处地理环境和气候影响很大。传统输电线路检查主要依靠维护人员周期性巡视,缺乏一定的时效性,在巡视周期的真空期也不能及时掌握线路走廊外力变化…

AQS面试题总结

一:线程等待唤醒的实现方法 方式一:使用Object中的wait()方法让线程等待,使用Object中的notify()方法唤醒线程 必须都在synchronized同步代码块内使用,调用wait,notify是锁定的对象; notify必须在wait后执…

振弦式传感器读数模块VM5系列介绍

VM5系列是专门针对单线圈式振弦传感器研发,可完成传感器的线圈激励、频率读数、温度测量等工作,具有标准的 UART(TTL/RS232/RS485)和 IIC 数字接口、模拟量输出接口(电压或电流),通过数字接口数…

【论文阅读笔记】GLM-130B: AN OPEN BILINGUAL PRE-TRAINEDMODEL

Glm-130b:开放式双语预训练模型 摘要 我们介绍了GLM-130B,一个具有1300亿个参数的双语(英语和汉语)预训练语言模型。这是一个至少与GPT-3(达芬奇)一样好的100b规模模型的开源尝试,并揭示了如何成功地对这种规模的模型进行预训练。在这一过程中&#xff0…

arcgis图上添加发光效果!

看完本文, 你可以不借助外部图片素材, 让你的图纸符号表达出你想要的光! 我们以之前的某个项目图纸为例,来介绍下让符号发光的技术! 第一步—底图整理 准备好栅格影像底图、行政边界的矢量数据,确保“数据合适、位置正确、边界吻合”。 确定好图纸的大小、出图比例、投…

食品企业数字孪生可视化管理平台,实现智慧轻工业高质量发展

如今,数字技术正在打破传统食品产业的边界,随着食品加工产业链不断进化为智慧体,数字孪生技术已经成了食品行业数字进阶的重要抓手。食品加工数字孪生工厂,通过应用数字孪生技术,将食品加工工厂的自动化生产线全过程进…

浏览器哪家强——PC端篇

今天的分享将围绕一个大家再熟悉不过的名称展开——浏览器。 根据百科给出的解释:浏览器是用来检索、展示以及传递Web信息资源的应用程序。通俗的说,浏览器就是一种阅读工具,类似记事本、word、wps,只不过后者阅读的是文本文档&am…

Linux0.11内核源码解析-malloc

malloc介绍 Linux内核版本0.11中的malloc.c文件实现了内存分配的功能。在这个版本的Linux内核中,malloc.c文件包含了内核级别的内存分配函数,用于分配和释放内核中的内存。这些函数可以帮助内核管理可用的内存,并允许内核动态地分配和释放内…

ajax-axios发送 get请求 或者 发送post请求带有请求体参数

/* axios v0.21.1 | (c) 2020 by Matt Zabriskie */ !function(e,t){"object"typeof exports&&"object"typeof module?module.exportst():"function"typeof define&&define.amd?define([],t):"object"typeof export…

记一次大数据事故@用了很久的虚拟机环境突然不能联网了

记一次大数据事故用了很久的虚拟机环境突然不能联网了 背景 今天打开自己电脑上的虚拟机环境打算练习一下flink,结果发现vmware里虚拟机能正常开机,也能正常进图os,但是就是不能ping通主机,主机也不能ping通虚拟机 探查 1、…

绝缘检测原理和绝缘电阻计算方法

文章目录 简介绝缘检测功能绝缘检测原理绝缘电阻检测的常用方法不平衡电桥法 绝缘电阻绝缘电阻的计算 绝缘检测开启或关闭为什么根据 V1 < V2 或 V1 ≥ V2 判断是上桥臂并入电阻还是下桥臂并入电阻 简介 绝缘检测是判断动力(正、负)总线与外…

Maven本地配置获取nexus私服的依赖

场景 Nexus-在项目中使用Maven私服,Deploy到私服、上传第三方jar包、在项目中使用私服jar包: Nexus-在项目中使用Maven私服,Deploy到私服、上传第三方jar包、在项目中使用私服jar包_nexus maven-releases 允许deploy-CSDN博客 在上面讲的是…

【6】c++11新特性(稳定性和兼容性)—>Lambda表达式

基本用法 lambda表达式是c最重要也是最常用的特性之一,这是现代编程语言的一个特点,lambda表达式有如下的一些优点: (1)声明式的编成风格:就地匿名定义目标函数活着函数对象,不需要额外写一个命…

Ubuntu20.04安装CUDA、cuDNN、tensorflow2可行流程(症状:tensorflow2在RTX3090上运行卡住)

最近发现我之前在2080ti上运行好好的代码,结果在3090上运行会卡住很久,而且模型预测结果完全乱掉,于是被迫研究了一天怎么在Ubuntu20.04安装CUDA、cuDNN、tensorflow2。 1.安装CUDA(包括CUDA驱动和CUDA toolkit,注意此…

【MySQL】MySQL的安装与配置环境变量(使其在控制台上使用)

作者主页:paper jie_博客 本文作者:大家好,我是paper jie,感谢你阅读本文,欢迎一建三连哦。 本文录入于《MySQL》专栏,本专栏是针对于大学生,编程小白精心打造的。笔者用重金(时间和精力)打造&a…

删除文件要谨慎!如何在Linux中删除目录或文件

删除目录和文件是任何操作系统中最基本但最重要的功能之一。在Linux中,如果运行的是窗口环境,则可以使用文件管理器应用程序查找和删除文件。也许你是通过SSH远程登录的,或者你的Linux计算机没有安装GUI,或者你想对你要删除的内容有更多的控制权。与Linux中的任何东西一样,…

【微服务 Spring Cloud Alibaba】- Nacos 服务注册中心

目录 1. 什么是注册中心? 1.2 注册中心的作用 2. SpringBoot 整合 Nacos 实现服务注册中心 2.1 将服务注册到 Nacos 2.2 实现消费者 3. 服务列表各个参数的含义、作用以及应用场景 1. 什么是注册中心? 注册中心是微服务架构中的一个重要组件&…

NoSQL数据库以及架构介绍

文章目录 一. 什么是NoSQL?二. NoSQL分类三. NoSQL与关系数据库有什么区别四. NoSQL主要优势和缺点五. NoSQL体系框架 其它相关推荐: 系统架构之微服务架构 系统架构设计之微内核架构 鸿蒙操作系统架构 架构设计之大数据架构(Lambda架构、Kap…

Selenium学习(Java + Edge)

Selenium /səˈliːniəm/ 1. 简介 ​ Selenium是一个用于Web应用程序自动化测试工具。Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。支持的浏览器包括IE、Mozilla Firefox、Safari、Google Chrome、Opera、Edge等。 ​ 适用于自动化测试&#x…