NLP之LSTM原理剖析

news2024/10/7 14:22:20

文章目录

  • 背景
    • simpleRNN的局限性
  • LSTM
    • 手写一下sigmoid例子
    • 支持长记忆的神经网络
    • 解读3重门

背景

SimpleRNN有一定局限性,
在这里插入图片描述

  1. 图片上的文字内容:

    • 图片标题提到“SimpleRNN是一种基础模型。它用于解决序列型问题,其中的每一步的输出会影响到下一步的结果。图中的公式和结构图都展示了这种关系。”
    • 下面给出了四行伪代码,描述了SimpleRNN的计算方式。简化为以下形式:
      1. out1和ht1是通过输入x1、前一时刻的状态h(t-1)、权重w1、u1以及偏置项bias进行某种激活函数的计算得到的。
      2. out2和ht2是通过输入x2、前一时刻的状态ht1、权重w2、u2以及偏置项bias进行计算得到的。
      3. out3和ht3是通过输入x3、前一时刻的状态ht2、权重w3、u3以及偏置项bias进行计算得到的。
      4. out4和ht4的计算方式未完整给出,但可以推测其与之前的计算方式类似。
  2. 图片中的图示内容:

    • 图中展示了一个序列型的网络结构,其中每个时间步都有一个输入和一个输出。
    • 从左到右,我们可以看到数据是如何流动的。每个时间步的输入都被标记为“输入”,每个时间步的输出被标记为“输出”,并且每个时间步之间都有一个状态“状态”。
    • 图中还展示了这些状态是如何从一个时间步传递到下一个时间步的,表现了RNN的“记忆”特性。
  3. 解读SimpleRNN的工作机制:

    • SimpleRNN在每个时间步都接受一个输入,并产生一个输出。但与一般的神经网络不同,SimpleRNN还维护一个“状态”,这个状态从一个时间步传递到下一个时间步。
    • 这个状态可以被视为网络的“记忆”,它携带了过去的信息,并用于影响当前时间步的计算。
    • 伪代码展示了每个时间步输出和状态的计算方法,这两者都依赖于当前的输入、前一时间步的状态、权重和偏置。
  4. 识别图中的位置:

    • 在图中,“我、爱、祖国”被分别标注在每一个时间步的上方。它们与每个时间步的“计算”模块相连接。
    • “记忆”则被标注在每个时间步的中心,并在时间步之间传递。
  5. 解释它们在SimpleRNN中的角色:

    • “我、爱、祖国”:这些词分别代表每个时间步的输入。在这个例子中,我们可以认为是在处理一个文本序列,即“我 爱 祖国”。在每一个时间步,“计算”模块会接收这些词作为输入。
    • “记忆”:这代表SimpleRNN的内部状态或“隐藏状态”。它会在时间步之间传递,并保存之前时间步的信息。在每一个时间步,“记忆”会被更新,并用于下一个时间步的计算。

所以,答案是“我、爱、祖国”是输入,而“记忆”代表SimpleRNN的内部状态。如果您有其他问题或需要进一步的澄清,请随时告诉我。

简而言之,图片展示了SimpleRNN如何在每个时间步接受输入,并根据前一时间步的“记忆”产生输出的过程。

simpleRNN的局限性

  1. 什么是神经网络和simpleRNN?

    • 神经网络是一种用于数据处理和模式识别的计算模型。它们通常用于诸如图像识别、自然语言处理等任务。
    • simpleRNN(简单循环神经网络)是一种特殊类型的神经网络,用于处理序列数据,比如文本或时间序列数据。
  2. simpleRNN的主要局限性以及简短解释

    • 梯度消失和梯度爆炸问题: 在处理长序列时,simpleRNN很难学习到早期信息的重要性,这主要是因为梯度(即用于更新模型权重的信号)会随时间减小(消失)或增大(爆炸)。

    • 短期记忆: simpleRNN通常只能记住短期的信息,这意味着它不擅长处理具有长期依赖关系的任务。

    • 计算效率: 尽管结构相对简单,但simpleRNN在处理非常长的序列时可能会变得计算密集和低效。

    • 过拟合: 因为模型较简单,所以它容易过拟合,即在训练数据上表现很好,但在未见过的数据上表现差。

这些是简单循环神经网络(simpleRNN)的主要局限性。

LSTM

手写一下sigmoid例子

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(-5.0, 5.0, 0.1)
print(x)
y = 1 / (1 + np.exp(-x))
print(y)
plt.plot(x, y)
plt.show()

在这里插入图片描述

支持长记忆的神经网络

在这里插入图片描述
在这里插入图片描述
解读并给出图片中所示网络结构的流程解释。

  1. 识别图中的关键部分:

    • A: 网络的核心计算单元。
    • X t − 1 X_{t-1} Xt1, X t X_t Xt, X t + 1 X_{t+1} Xt+1: 输入序列中的各个时间步。
    • h t − 1 h_{t-1} ht1, h t h_t ht, h t + 1 h_{t+1} ht+1: 对应时间步的输出或隐藏状态。
    • “tanh”激活函数,加法和乘法运算。
  2. 为每一部分提供描述:

    • A: 它是网络的核心部分,负责进行所有的计算。接收输入和前一个时间步的隐藏状态,输出当前时间步的隐藏状态。
    • X t − 1 X_{t-1} Xt1, X t X_t Xt, X t + 1 X_{t+1} Xt+1: 这些是顺序输入到网络中的数据,分别对应于连续的时间步。
    • h t − 1 h_{t-1} ht1, h t h_t ht, h t + 1 h_{t+1} ht+1: 这些是网络在各个时间步的输出或隐藏状态。它们包含了之前时间步的信息,并在连续的时间步中传递。
    • “tanh”是一种激活函数,用于非线性转换。
  3. 描述整个流程:

    • 开始于时间步t-1,输入 X t − 1 X_{t-1} Xt1和隐藏状态 h t − 2 h_{t-2} ht2被提供给单元A。
    • 在单元A内,进行了乘法、加法和“tanh”激活函数的计算。
    • 输出结果为隐藏状态 h t − 1 h_{t-1} ht1,这个状态同时也是这一时间步的输出,并且会被传递到下一个时间步。
    • 对于时间步t,该过程重复,输入 X t X_t Xt和隐藏状态 h t − 1 h_{t-1} ht1被提供给单元A,输出为 h t h_t ht
    • 同样的流程继续进行,对于时间步t+1,输入为 X t + 1 X_{t+1} Xt+1和隐藏状态 h t h_t ht,输出为 h t + 1 h_{t+1} ht+1

整体而言,这是一个循环神经网络(RNN)的简化表示,用于处理序列数据。每个时间步接收一个输入和前一个时间步的隐藏状态,产生一个输出,并将该输出传递到下一个时间步。

解读3重门

在这里插入图片描述
上图中,i=input o=output f=forget

这是一个展示长短时记忆(Long Short-Term Memory, LSTM)网络中某一单元的计算过程的图片。

1. 描述图片的主要部分

  • 图片标题:“三重门机制”。
  • 图中给出了几个公式,描述了LSTM中的输入门(i)、遗忘门(f)和输出门(o)的计算,以及记忆细胞的更新方式。
  • 图片下方展示了LSTM单元中数据流的方向。

2. 解释LSTM的工作原理

  • LSTM设计用于解决梯度消失和梯度爆炸的问题,这在传统的RNN中是一个挑战。
  • LSTM通过三个门(输入门、遗忘门和输出门)和一个记忆细胞来工作,从而实现长期记忆。

3. 根据图片内容提供额外的补充和解读

  • 输入门(i): 控制新输入信息的量。计算公式为 i = sigmoid(wt * xt + ut * ht-1 + b)
  • 遗忘门(f): 决定哪些信息从记忆细胞中被抛弃或遗忘。计算公式为 f = sigmoid(wt * xt + ut * ht-1 + b)
  • 输出门(o): 控制从记忆细胞到隐藏状态的输出信息量。计算公式为 o = sigmoid(wt * xt + ut * ht-1 + b)
  • ˜C:当前输入信息的候选值。计算公式为 ˜C = tanh(wt@xt + ht-1@wh + b)
  • Ct: 更新的记忆细胞。计算公式为 Ct = f * Ct-1 + i * ˜C,表示遗忘门选择遗忘的信息和输入门选择的新信息的结合。
  • ht: 当前的隐藏状态。计算公式为 ht = o * tanh(Ct)

这些门的作用使LSTM能够学习和记住长期的依赖关系,从而在各种序列预测任务中取得了成功。

让我们先逐步解读LSTM的计算过程,然后将其与传统RNN进行比较。

1. LSTM的计算过程

a. 输入:

  • x t xt xt:当前时间步的输入。
  • $ht-1$:前一时间步的隐藏状态。
  • C t − 1 Ct-1 Ct1:前一时间步的记忆细胞。

b. 遗忘门(f):
计算哪些先前的记忆需要被保留或遗忘。
f = s i g m o i d ( w t ∗ x t + u t ∗ h t − 1 + b ) f = sigmoid(wt * xt + ut * ht-1 + b) f=sigmoid(wtxt+utht1+b)

c. 输入门(i)记忆候选值(˜C):
决定更新哪些新的记忆。
i = s i g m o i d ( w t ∗ x t + u t ∗ h t − 1 + b ) i = sigmoid(wt * xt + ut * ht-1 + b) i=sigmoid(wtxt+utht1+b)
˜ C = t a n h ( w t @ x t + h t − 1 @ w h + b ) ˜C = tanh(wt@xt + ht-1@wh + b) ˜C=tanh(wt@xt+ht1@wh+b)

d. 更新记忆细胞(Ct):
结合遗忘门的输出和输入门的输出,更新记忆细胞。
C t = f ∗ C t − 1 + i ∗ ˜ C Ct = f * Ct-1 + i * ˜C Ct=fCt1+i˜C

e. 输出门(o):
计算下一个隐藏状态应该是什么。
o = s i g m o i d ( w t ∗ x t + u t ∗ h t − 1 + b ) o = sigmoid(wt * xt + ut * ht-1 + b) o=sigmoid(wtxt+utht1+b)

f. 计算隐藏状态(ht):
h t = o ∗ t a n h ( C t ) ht = o * tanh(Ct) ht=otanh(Ct)

2. LSTM与传统RNN的区别

a. 记忆细胞与隐藏状态:

  • LSTM: 有一个称为“记忆细胞”的附加状态,它可以存储跨多个时间步的信息。
  • RNN: 只有一个隐藏状态。

b. 门机制:

  • LSTM: 使用三个门(输入、输出和遗忘门)来控制信息的流动。
  • RNN: 没有这些门,信息简单地在每个时间步被传递和变换。

c. 长期依赖:

  • LSTM: 由于其门机制和记忆细胞,LSTM可以处理长期依赖,记住信息超过数百个时间步。
  • RNN: 很难处理长期依赖,因为信息在每个时间步都会逐渐丢失或被稀释。

d. 梯度问题:

  • LSTM: 设计来缓解梯度消失和爆炸问题。
  • RNN: 更容易遭受梯度消失或梯度爆炸问题。

总结: 虽然LSTM和RNN都是递归神经网络的变体,但LSTM通过其门机制和记忆细胞设计,使其能够更好地处理长期依赖,而不受梯度消失或梯度爆炸问题的困扰。

在这里插入图片描述

内部结构:
在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1155596.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[计算机提升] 查看系统软件

3.1 查看系统软件 此处系统软件为系统安装后自带的一些软件、工具等。包括:管理工具、系统工具、轻松使用工具、附件等。 方法一:通过菜单打开系统软件 1、点击左下角windows菜单键,在弹出的菜单中,任一点击一个字母(示例中为C)&…

听GPT 讲Rust源代码--library/std(10)

题图来自 Rust Development Roadmap[1] File: rust/library/std/src/sys/windows/c.rs 在Rust源代码的rust/library/std/src/sys/windows/c.rs文件中,主要定义了Rust对于Windows操作系统的系统调用接口。该文件定义了各种Windows特定的结构体、枚举和常量&#xff0…

NAS(qnap)中安装git服务(gogs),硬件为TS-453Bmini,固件版本:QTS 5.1.2.2533

NAS(qnap)中安装git服务(gogs),硬件为TS-453Bmini,固件版本:QTS 5.1.2.2533 1.进入nas的管理界面,找到App Center: 2.在AppCenter中,安装ContainerStation容器工作站: 3.ContainerStation容器工作站中&…

linux驱动开发环境搭建

使用的是parallel 创建的ubuntu 16.04 ubuntu20.04虚拟机 源码准备 # 先查看本机版本 $ uname -r 5.15.0-86-generic# 搜索相关源码 $ sudo apt-cache search linux-source [sudo] password for showme: linux-source - Linux kernel source with Ubuntu patches linux-sourc…

【Kubernetes 基本概念】Kubernetes 的架构和核心概念

目录 一、Kurbernetes1.1 简介1.2 为什么要用K8s?1.3 K8s的特性 二、Kurbernetes集群架构与组件三、Kurbernetes的核心组件3.1 Master组件3.1.1 Kube-apiserver3.1.2 Kube-controller-manager3.1.3 Kube-scheduler 3.2 配置存储中心——etcd3.3 Node组件3.3.1 Kubelet3.3.2 Ku…

qnx resource managers 实例

文章目录 前言一、resource managers 是什么二、device resource managers 实例1. Single-threaded device resource manager2.Multithreaded device resource manager3.Resource Managers that Handle Multiple Devices总结参考资料前言 本文主要介绍如何编写一个 qnx 下 的 …

CSS图片下方4px间距

目录 1,问题表现2,问题解决 1,问题表现 .test-img {height: 100px;outline: 1px solid salmon; }图片下方有4px间距。 图片下方是图片时问题也存在。 2,问题解决 图片设置 display: block;图片设置 vertical-align: middle; …

【Java 进阶篇】深入理解 Java Response:从基础到高级

HTTP响应(Response)是Web开发中的一个关键概念,它是服务器向客户端(通常是浏览器)返回数据的方式。理解如何在Java中处理和构建HTTP响应是开发Web应用程序的重要一部分。本文将从基础知识到高级技巧,详细介…

Python---判定表法(功能测试)

能对多条件依赖关系进行设计测试点---判定表法 等价类、边界值分析法主要关注单个输入类条件的测试 定义:是一种以表格形式表达多条件逻辑判断的工具。 条件桩: 列出问题中的所有条件,列出条件的次序无关紧要动作桩: 列出问题中可能采取的操作,操作的…

安装最新版vue-cli,并搭建一个vue2项目

安装最新版vue-cli,并搭建一个vue2项目 卸载旧版本环境 卸载node.js 可以使用qq电脑管家,找到nodejs卸载即可 cmd查看vue cli版本(可以看到我们是vue cli 2.x) C:\Users\youzhengjie666> vue -V 2.9.6卸载vue cli 2.x np…

学习笔记|单样本t检验|无统计学意义|规范表达|《小白爱上SPSS》课程:SPSS第四讲 | 单样本T检验怎么做?很单纯很简单!

目录 学习目的软件版本原始文档一、实战案例二、案例解析本案例之目的 四、SPSS操作1、正态性检验Tips:无统计学意义 2、t检验结果 五、结果解读六、规范报告1、规范表格2、规范文字 注意划重点 学习目的 SPSS第四讲 | 单样本T检验怎么做?很单纯很简单&…

Python爬取读书网的图片链接和书名并保存在数据库中

一个比较基础且常见的爬虫,写下来用于记录和巩固相关知识。 一、前置条件 本项目采用scrapy框架进行爬取,需要提前安装 pip install scrapy# 国内镜像 pip install scrapy -i https://pypi.douban.com/simple 由于需要保存数据到数据库,因…

CCLINK IEFB转Profinet协议网关连接1200和三菱FX5U的通讯方法

捷米JM-PN-CCLKIE这款网关主要功能是实现CCLINK IEFB总线和PROFINET网络的数据互通。 JM-PN-CCLKIE网关连接到PROFINET总线中做为从站使用,连接到CCLINK IEFB总线中做为从站使用。该产品主要功能是实现CCLINK IEFB总线和PROFINET网络的数据互通。JM-PN-CCLKIE网关分…

PyQt5:构建目标检测算法GUI界面 (附python代码)

文章目录 1.界面2.代码3.Analyze 1.界面 目标检测算法一般就是检测个图片,然后显示图片结果。 最简单的情况,我们需要一个按钮读取图片,然后后有一个地方显示图片。 2.代码 import sys import numpy as np from PIL import Imagefrom PyQt…

问题 C: 搬寝室(DP)

算法分析: 题目意思为求n个物品,拿k对使得消耗的体力最少, 或者说是这k对物品,每一对中两件物品的质量差平方最小, 所以要使得质量差的平方小,只能排序后取质量相邻两个物品作为一对; 现在设f…

Leetcode刷题笔记--Hot91--100

1--汉明距离&#xff08;461&#xff09; 主要思路&#xff1a; 按位异或&#xff0c;统计1的个数&#xff1b; #include <iostream> #include <vector>class Solution { public:int hammingDistance(int x, int y) {int z x ^ y; // 按位异或int res 0;while(…

行情分析——加密货币市场大盘走势(10.31)

目前大饼依然在33000-36000这个位置震荡&#xff0c;需要等待指标修复&#xff0c;策略就是逢低做多&#xff0c;做短线。最近白天下跌&#xff0c;晚上涨回来&#xff0c;可以小仓位入场多单&#xff0c;晚上离场下车。 以太同样是震荡行情&#xff0c;看下来以太目前在补涨&a…

virtual 关键字中 cv限定符的使用

对于如下定义&#xff1a; struct A { virtual int f( ) { return 1; } } a; struct B: A {int f( ) const { return 2; }int f( ) volatile { return 3; }int f( ) const volatile { return 4; } } c; int main(int argc, char *argv[ ]) { A *p&c; return p->f( ); } …

公共字段自动填充、菜品管理

一、公共字段填充 1.1、问题分析 1.2、实现思路 1.3、代码开发 1.3.1、自定义注解 import com.sky.enumeration.OperationType;import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import jav…

88 每日温度

每日温度 理解为什么用栈&#xff1a;一种在连续数据里的局部关系&#xff0c;这道题体现在temp[0]只和第一个比它大的值下标有关题解1 逆波兰栈改进(单调栈) 给定一个整数数组 temperatures &#xff0c;表示每天的温度&#xff0c;返回一个数组 answer &#xff0c;其中 a…