MQ——进阶

news2025/1/10 21:57:12

文章目录

  • 消息可靠性
    • 生产者消息确认
    • 消息持久化
    • 消费者确认
      • 演示none模式
      • 演示auto模式
    • 失败重试机制
      • 本地重试
      • 失败策略
  • 死信交换机
    • 初始死信交换机
    • TTL
    • 延迟队列
      • 安装DelayExchange插件
      • 使用DelayExchange
  • 惰性队列
    • 消息堆积问题
    • 惰性队列
  • MQ集群
    • 集群分类
    • 普通集群
    • 镜像模式
      • 镜像模式的配置
    • 仲裁队列
    • Java代码创建仲裁队列

消息队列在使用过程中,面临着很多实际问题需要思考:
在这里插入图片描述

  • 执行下面的命令来运行MQ容器:

    docker run \
     -e RABBITMQ_DEFAULT_USER=xiaowu \
     -e RABBITMQ_DEFAULT_PASS=123456 \
     -v mq-plugins:/plugins \
     --name mq \
     --hostname mq1 \
     -p 15672:15672 \
     -p 5672:5672 \
     -d \
     rabbitmq:3.8-management
    

消息可靠性

消息从发送,到消费者接收,会经历多个过程:
在这里插入图片描述
其中的每一步都可能导致消息丢失,常见的丢失原因包括:

  • 发送时丢失:
    • 生产者发送的消息未送达exchange
    • 消息到达exchange后未到达queue
  • MQ宕机,queue将消息丢失
  • consumer接收到消息后未消费就宕机

针对这些问题,RabbitMQ分别给出了解决方案:

  • 生产者确认机制
  • mq持久化
  • 消费者确认机制
  • 失败重试机制

下面我们就通过案例来演示每一个步骤

首先,导入课前资料提供的demo工程:

在这里插入图片描述
项目结构如下:

在这里插入图片描述

生产者消息确认

RabbitMQ提供了publisher confirm机制来避免消息发送到MQ过程中丢失。这种机制必须给每个消息指定一个唯一ID。消息发送到MQ以后,会返回一个结果给发送者,表示消息是否处理成功
返回结果有两种方式:

  • publisher-confirm,发送者确认

    • 消息成功投递到交换机,返回ack
    • 消息未投递到交换机,返回nack
  • publisher-return,发送者回执

    • 消息投递到交换机了,但是没有路由到队列。返回ACK,及路由失败原因
  • 注意: 确认机制发送消息时,需要给每个消息设置一个全局唯一id,以区分不同消息,避免ack冲突
    在这里插入图片描述


  • 修改配置
    首先,修改publisher服务中的application.yml文件,添加下面的内容:

    spring:
      rabbitmq:
        publisher-confirm-type: correlated
        publisher-returns: true
        template:
          mandatory: true
    

    说明:

    • publish-confirm-type:开启publisher-confirm,这里支持两种类型:
      • simple:同步等待confirm结果,直到超时
      • correlated:异步回调,定义ConfirmCallback,MQ返回结果时会回调这个ConfirmCallback
    • publish-returns:开启publish-return功能,同样是基于callback机制,不过是定义ReturnCallback
    • template.mandatory:定义消息路由失败时的策略。true,则调用ReturnCallback;false:则直接丢弃消息
  • 定义Return回调
    每个RabbitTemplate只能配置一个ReturnCallback,因此需要在项目加载时配置:
    修改publisher服务,添加一个:

    @Slf4j
    @Configuration
    public class CommonConfig implements ApplicationContextAware {
        @Override
        public void setApplicationContext(ApplicationContext applicationContext) throws BeansException {
            // 获取RabbitTemplate
            RabbitTemplate rabbitTemplate = applicationContext.getBean(RabbitTemplate.class);
            // 设置ReturnCallback
            rabbitTemplate.setReturnCallback((message, replyCode, replyText, exchange, routingKey) -> {
                // 投递失败,记录日志
                log.info("消息发送失败,应答码{},原因{},交换机{},路由键{},消息{}",
                         replyCode, replyText, exchange, routingKey, message.toString());
                // 如果有业务需要,可以重发消息
            });
        }
    }
    
  • 定义ConfirmCallback
    ConfirmCallback可以在发送消息时指定,因为每个业务处理confirm成功或失败的逻辑不一定相同
    在publisher服务的cn.itcast.mq.spring.SpringAmqpTest类中,定义一个单元测试方法:

    @Test
    public void testSendMessage2SimpleQueue() throws InterruptedException {
        // 1.消息体
        String message = "hello, spring amqp!";
        // 2.全局唯一的消息ID,需要封装到CorrelationData中
        CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());
        // 3.添加callback
        correlationData.getFuture().addCallback(
            result -> {
                if(result.isAck()){
                    // 3.1.ack,消息成功
                    log.debug("消息发送成功, ID:{}", correlationData.getId());
                }else{
                    // 3.2.nack,消息失败
                    log.error("消息发送失败, ID:{}, 原因{}",correlationData.getId(), result.getReason());
                }
            },
            ex -> log.error("消息发送异常, ID:{}, 原因{}",correlationData.getId(),ex.getMessage())
        );
        // 4.发送消息
        rabbitTemplate.convertAndSend("task.direct", "task", message, correlationData);
    
        // 休眠一会儿,等待ack回执
        Thread.sleep(2000);
    }
    

消息持久化

生产者确认可以确保消息投递到RabbitMQ的队列中,但是消息发送到RabbitMQ以后,如果突然宕机,也可能导致消息丢失
要想确保消息在RabbitMQ中安全保存,必须开启消息持久化机制

  • 交换机持久化
  • 队列持久化
  • 消息持久化
  • 交换机持久化
    RabbitMQ中交换机默认是非持久化的,mq重启后就丢失
    SpringAMQP中可以通过代码指定交换机持久化:

    @Bean
    public DirectExchange simpleExchange(){
        // 三个参数:交换机名称、是否持久化、当没有queue与其绑定时是否自动删除
        return new DirectExchange("simple.direct", true, false);
    }
    

    事实上,默认情况下,由SpringAMQP声明的交换机都是持久化的

    可以在RabbitMQ控制台看到持久化的交换机都会带上D的标示:
    在这里插入图片描述

  • 队列持久化
    RabbitMQ中队列默认是非持久化的,mq重启后就丢失
    SpringAMQP中可以通过代码指定交换机持久化:

    @Bean
    public Queue simpleQueue(){
        // 使用QueueBuilder构建队列,durable就是持久化的
        return QueueBuilder.durable("simple.queue").build();
    }
    

    事实上,默认情况下,由SpringAMQP声明的队列都是持久化的

    可以在RabbitMQ控制台看到持久化的队列都会带上D的标示:
    在这里插入图片描述

  • 消息持久化
    利用SpringAMQP发送消息时,可以设置消息的属性(MessageProperties),指定delivery-mode:

    • 1:非持久化
    • 2:持久化

    用java代码指定:
    在这里插入图片描述
    默认情况下,SpringAMQP发出的任何消息都是持久化的,不用特意指定

消费者确认

RabbitMQ是阅后即焚机制,RabbitMQ确认消息被消费者消费后会立刻删除

而RabbitMQ是通过消费者回执来确认消费者是否成功处理消息的:消费者获取消息后,应该向RabbitMQ发送ACK回执,表明自己已经处理消息

设想这样的场景:

  • RabbitMQ投递消息给消费者
  • 消费者获取消息后,返回ACK给RabbitMQ
  • RabbitMQ删除消息
  • 消费者宕机,消息尚未处理

这样,消息就丢失了。因此消费者返回ACK的时机非常重要


而SpringAMQP则允许配置三种确认模式:

  • manual:手动ack,需要在业务代码结束后,调用api发送ack。
  • auto:自动ack,由spring监测listener代码是否出现异常,没有异常则返回ack;抛出异常则返回nack
  • none:关闭ack,MQ假定消费者获取消息后会成功处理,因此消息投递后立即被删除

由此可知:

  • none模式下,消息投递是不可靠的,可能丢失
  • auto模式类似事务机制,出现异常时返回nack,消息回滚到mq;没有异常,返回ack
  • manual:自己根据业务情况,判断什么时候该ack

一般,我们都是使用默认的auto即可


演示none模式

  • 修改consumer服务的application.yml文件,添加下面内容:

    spring:
      rabbitmq:
        listener:
          simple:
            acknowledge-mode: none # 关闭ack
    
  • 修改consumer服务的SpringRabbitListener类中的方法,模拟一个消息处理异常:

    @RabbitListener(queues = "simple.queue")
    public void listenSimpleQueue(String msg) {
        log.info("消费者接收到simple.queue的消息:【{}】", msg);
        // 模拟异常
        System.out.println(1 / 0);
        log.debug("消息处理完成!");
    }
    

    测试可以发现,当消息处理抛异常时,消息依然被RabbitMQ删除了

演示auto模式

  • 再次把确认机制修改为auto:

    spring:
      rabbitmq:
        listener:
          simple:
            acknowledge-mode: auto # 自动ack
    
  • 在异常位置打断点,再次发送消息,程序卡在断点时,可以发现此时消息状态为unack(未确定状态):
    在这里插入图片描述

  • 抛出异常后,因为Spring会自动返回nack,所以消息恢复至Ready状态,并且没有被RabbitMQ删除:
    在这里插入图片描述

失败重试机制

当消费者出现异常后,消息会不断requeue(重入队)到队列,再重新发送给消费者,然后再次异常,再次requeue,无限循环,导致mq的消息处理飙升,带来不必要的压力
在这里插入图片描述

本地重试

我们可以利用Spring的retry机制,在消费者出现异常时利用本地重试,而不是无限制的requeue到MQ队列
修改consumer服务的application.yml文件,添加内容:

spring:
  rabbitmq:
    listener:
      simple:
        retry:
          enabled: true # 开启消费者失败重试
          initial-interval: 1000 # 初识的失败等待时长为1秒
          multiplier: 1 # 失败的等待时长倍数,下次等待时长 = multiplier * last-interval
          max-attempts: 3 # 最大重试次数
          stateless: true # true无状态;false有状态。如果业务中包含事务,这里改为false

重启consumer服务,重复之前的测试。可以发现:

  • 在重试3次后,SpringAMQP会抛出异常AmqpRejectAndDontRequeueException,说明本地重试触发了
  • 查看RabbitMQ控制台,发现消息被删除了,说明最后SpringAMQP返回的是ack,mq删除消息了

结论:

  • 开启本地重试时,消息处理过程中抛出异常,不会requeue到队列,而是在消费者本地重试
  • 重试达到最大次数后,Spring会返回ack,消息会被丢弃

失败策略

在之前的测试中,达到最大重试次数后,消息会被丢弃,这是由Spring内部机制决定的

在开启重试模式后,重试次数耗尽,如果消息依然失败,则需要有MessageRecovery接口来处理,它包含三种不同的实现:

  • RejectAndDontRequeueRecoverer:重试耗尽后,直接reject,丢弃消息。默认就是这种方式

  • ImmediateRequeueMessageRecoverer:重试耗尽后,返回nack,消息重新入队

  • RepublishMessageRecoverer:重试耗尽后,将失败消息投递到指定的交换机


比较优雅的一种处理方案是RepublishMessageRecoverer,失败后将消息投递到一个指定的,专门存放异常消息的队列,后续由人工集中处理

  • 在consumer服务中定义处理失败消息的交换机和队列

    @Bean
    public DirectExchange errorMessageExchange(){
        return new DirectExchange("error.direct");
    }
    @Bean
    public Queue errorQueue(){
        return new Queue("error.queue", true);
    }
    @Bean
    public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){
        return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");
    }
    
  • 定义一个RepublishMessageRecoverer,关联队列和交换机

    @Bean
    public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){
        return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
    }
    

死信交换机

初始死信交换机

当一个队列中的消息满足下列情况之一时,可以成为死信(dead letter):

  • 消费者使用basic.reject或 basic.nack声明消费失败,并且消息的requeue参数设置为false
  • 消息是一个过期消息,超时无人消费
  • 要投递的队列消息满了,无法投递

如果这个包含死信的队列配置了dead-letter-exchange属性,指定了一个交换机,那么队列中的死信就会投递到这个交换机中,而这个交换机称为死信交换机(Dead Letter Exchange,检查DLX)

如图,一个消息被消费者拒绝了,变成了死信:
在这里插入图片描述
因为simple.queue绑定了死信交换机 dl.direct,因此死信会投递给这个交换机:在这里插入图片描述
如果这个死信交换机也绑定了一个队列,则消息最终会进入这个存放死信的队列:在这里插入图片描述
另外,队列将死信投递给死信交换机时,必须知道两个信息:

  • 死信交换机名称
  • 死信交换机与死信队列绑定的RoutingKey

这样才能确保投递的消息能到达死信交换机,并且正确的路由到死信队列
在这里插入图片描述

TTL

一个队列中的消息如果超时未消费,则会变为死信,超时分为两种情况:

  • 消息所在的队列设置了超时时间
  • 消息本身设置了超时时间
    在这里插入图片描述

  • 接收超时死信的死信交换机
    在consumer服务的SpringRabbitListener中,定义一个新的消费者,并且声明 死信交换机、死信队列:

    @RabbitListener(bindings = @QueueBinding(
        value = @Queue(name = "dl.ttl.queue", durable = "true"),
        exchange = @Exchange(name = "dl.ttl.direct"),
        key = "ttl"
    ))
    public void listenDlQueue(String msg){
        log.info("接收到 dl.ttl.queue的延迟消息:{}", msg);
    }
    
  • 声明一个队列,并且指定TTL
    要给队列设置超时时间,需要在声明队列时配置x-message-ttl属性:

    @Bean
    public Queue ttlQueue(){
        return QueueBuilder.durable("ttl.queue") // 指定队列名称,并持久化
            .ttl(10000) // 设置队列的超时时间,10秒
            .deadLetterExchange("dl.ttl.direct") // 指定死信交换机
            .build();
    }
    

    注意,这个队列设定了死信交换机为dl.ttl.direct

    声明交换机,将ttl与交换机绑定:

    @Bean
    public DirectExchange ttlExchange(){
        return new DirectExchange("ttl.direct");
    }
    @Bean
    public Binding ttlBinding(){
        return BindingBuilder.bind(ttlQueue()).to(ttlExchange()).with("ttl");
    }
    

    发送消息,但是不要指定TTL:

    @Test
    public void testTTLQueue() {
        // 创建消息
        String message = "hello, ttl queue";
        // 消息ID,需要封装到CorrelationData中
        CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());
        // 发送消息
        rabbitTemplate.convertAndSend("ttl.direct", "ttl", message, correlationData);
        // 记录日志
        log.debug("发送消息成功");
    }
    
  • 发送消息时,设定TTL
    在发送消息时,也可以指定TTL:

    @Test
    public void testTTLMsg() {
        // 创建消息
        Message message = MessageBuilder
            .withBody("hello, ttl message".getBytes(StandardCharsets.UTF_8))
            .setExpiration("5000")	//设置队列超时时间
            .build();
        // 消息ID,需要封装到CorrelationData中
        CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());
        // 发送消息
        rabbitTemplate.convertAndSend("ttl.direct", "ttl", message, correlationData);
        log.debug("发送消息成功");
    }
    

消息超时的两种方式是?

  • 给队列设置ttl属性,进入队列后超过ttl时间的消息变为死信
  • 给消息设置ttl属性,队列接收到消息超过ttl时间后变为死信

如何实现发送一个消息20秒后消费者才收到消息?

  • 给消息的目标队列指定死信交换机
  • 将消费者监听的队列绑定到死信交换机
  • 发送消息时给消息设置超时时间为20秒

延迟队列

利用TTL结合死信交换机,我们实现了消息发出后,消费者延迟收到消息的效果。这种消息模式就称为延迟队列(Delay Queue) 模式

延迟队列的使用场景包括:

  • 延迟发送短信
  • 用户下单,如果用户在15 分钟内未支付,则自动取消
  • 预约工作会议,20分钟后自动通知所有参会人员

因为延迟队列的需求非常多,所以RabbitMQ的官方也推出了一个插件,原生支持延迟队列效果,这个插件就是DelayExchange插件

安装DelayExchange插件

官方的安装指南,上述文档是基于linux原生安装RabbitMQ,然后安装插件

因为我们之前是基于Docker安装RabbitMQ,所以下面我们会讲解基于Docker来安装RabbitMQ插件


  • 下载插件
    RabbitMQ有一个官方的插件社区,
    其中包含各种各样的插件,包括我们要使用的DelayExchange插件:
    在这里插入图片描述

  • 上传插件
    因为我们是基于Docker安装,所以需要先查看RabbitMQ的插件目录对应的数据卷。如果不是基于Docker的同学,请参考第一章部分,重新创建Docker容器

    我们之前设定的RabbitMQ的数据卷名称为mq-plugins,所以我们使用下面命令查看数据卷:docker volume inspect mq-plugins
    可以得到下面结果:在这里插入图片描述

    接下来,将插件上传到这个目录即可:

  • 安装插件
    最后就是安装了,需要进入MQ容器内部来执行安装。我的容器名为mq,所以执行下面命令:docker exec -it mq bash
    进入容器内部后,执行下面命令开启插件:

    rabbitmq-plugins enable rabbitmq_delayed_message_exchange
    

    结果如下:
    在这里插入图片描述

使用DelayExchange

DelayExchange原理:
DelayExchange需要将一个交换机声明为delayed类型。当我们发送消息到delayExchange时,流程如下:

  • 接收消息

  • 接收消息

  • 判断消息是否具备x-delay属性

  • 如果有x-delay属性,说明是延迟消息,持久化到硬盘,读取x-delay值,作为延迟时间

  • 返回routing not found结果给消息发送者

  • x-delay时间到期后,重新投递消息到指定队列

  • 声明DelayExchange交换机
    基于注解方式(推荐):
    在这里插入图片描述
    也可以基于@Bean的方式:
    在这里插入图片描述

  • 发送消息
    发送消息时,一定要携带x-delay属性,指定延迟的时间:
    在这里插入图片描述

惰性队列

消息堆积问题

当生产者发送消息的速度超过了消费者处理消息的速度,就会导致队列中的消息堆积,直到队列存储消息达到上限。之后发送的消息就会成为死信,可能会被丢弃,这就是消息堆积问题
在这里插入图片描述
解决消息堆积有三种思路:

  • 增加更多消费者,提高消费速度。也就是我们之前说的work queue模式
  • 在消费者内开启线程池加快消息处理速度
  • 扩大队列容积,提高堆积上限

要提升队列容积,把消息保存在内存中显然是不行的

惰性队列

从RabbitMQ的3.6.0版本开始,就增加了Lazy Queues的概念,也就是惰性队列。惰性队列的特征如下:

  • 接收到消息后直接存入磁盘而非内存
  • 消费者要消费消息时才会从磁盘中读取并加载到内存
  • 支持数百万条的消息存储
  • 基于命令行设置lazy-queue
    而要设置一个队列为惰性队列,只需要在声明队列时,指定x-queue-mode属性为lazy即可。可以通过命令行将一个运行中的队列修改为惰性队列:rabbitmqctl set_policy Lazy "^lazy-queue$" '{"queue-mode":"lazy"}' --apply-to queues
    命令解读:

    • rabbitmqctl :RabbitMQ的命令行工具
    • set_policy :添加一个策略
    • Lazy :策略名称,可以自定义
    • "^lazy-queue$" :用正则表达式匹配队列的名字
    • '{"queue-mode":"lazy"}' :设置队列模式为lazy模式
    • --apply-to queues :策略的作用对象,是所有的队列
  • 基于@Bean声明lazy-queue
    在这里插入图片描述

  • 基于@RabbitListener声明LazyQueue
    在这里插入图片描述

MQ集群

集群分类

RabbitMQ的是基于Erlang语言编写,而Erlang又是一个面向并发的语言,天然支持集群模式。RabbitMQ的集群有两种模式:

  • 普通集群:是一种分布式集群,将队列分散到集群的各个节点,从而提高整个集群的并发能力。
  • 镜像集群:是一种主从集群,普通集群的基础上,添加了主从备份功能,提高集群的数据可用性。

镜像集群虽然支持主从,但主从同步并不是强一致的,某些情况下可能有数据丢失的风险。因此在RabbitMQ的3.8版本以后,推出了新的功能:仲裁队列来代替镜像集群,底层采用Raft协议确保主从的数据一致性

普通集群

普通集群,或者叫标准集群(classic cluster),具备下列特征:

  • 会在集群的各个节点间共享部分数据,包括:交换机、队列元信息。不包含队列中的消息。
  • 当访问集群某节点时,如果队列不在该节点,会从数据所在节点传递到当前节点并返回
  • 队列所在节点宕机,队列中的消息就会丢失
    在这里插入图片描述

普通集群部署
我们先来看普通模式集群,我们的计划部署3节点的mq集群:

主机名控制台端口amqp通信端口
mq18081 —> 156728071 —> 5672
mq28082 —> 156728072 —> 5672
mq38083 —> 156728073 —> 5672

集群中的节点标示默认都是:rabbit@[hostname],因此以上三个节点的名称分别为:

  • rabbit@mq1
  • rabbit@mq2
  • rabbit@mq3

  • 获取cookie

    RabbitMQ底层依赖于Erlang,而Erlang虚拟机就是一个面向分布式的语言,默认就支持集群模式。集群模式中的每个RabbitMQ 节点使用 cookie 来确定它们是否被允许相互通信。 要使两个节点能够通信,它们必须具有相同的共享秘密,称为Erlang cookie。cookie 只是一串最多 255 个字符的字母数字字符。 每个集群节点必须具有相同的cookie。实例之间也需要它来相互通。

    我们先在之前启动的mq容器中获取一个cookie值,作为集群的cookie。执行下面的命令:docker exec -it mq cat /var/lib/rabbitmq/.erlang.cookie

    可以看到cookie值如下:FXZMCVGLBIXZCDEMMVZQ

    接下来,停止并删除当前的mq容器,我们重新搭建集群:docker rm -f mq
    在这里插入图片描述
    清理数据卷:docker volume prune

  • 准备集群配置
    在/tmp目录新建一个配置文件 rabbitmq.conf:

    cd /tmp
    # 创建文件
    touch rabbitmq.conf
    

    文件内容如下:

    loopback_users.guest = false # 禁用guest用户
    listeners.tcp.default = 5672 # 监听通信端口
    cluster_formation.peer_discovery_backend = rabbit_peer_discovery_classic_config
    # 集群中的节点信息
    cluster_formation.classic_config.nodes.1 = rabbit@mq1
    cluster_formation.classic_config.nodes.2 = rabbit@mq2
    cluster_formation.classic_config.nodes.3 = rabbit@mq3
    

    再创建一个文件,记录cookie

    cd /tmp
    # 创建cookie文件
    touch .erlang.cookie
    # 写入cookie
    echo "UAVTWVWRVLRWINLJCYAA" > .erlang.cookie
    # 修改cookie文件的权限
    chmod 600 .erlang.cookie
    

    准备三个目录,mq1、mq2、mq3:

    cd /tmp
    # 创建目录
    mkdir mq1 mq2 mq3
    

    然后拷贝rabbitmq.conf、cookie文件到mq1、mq2、mq3:

    # 进入/tmp
    cd /tmp
    # 拷贝
    cp rabbitmq.conf mq1
    cp rabbitmq.conf mq2
    cp rabbitmq.conf mq3
    cp .erlang.cookie mq1
    cp .erlang.cookie mq2
    cp .erlang.cookie mq3
    
  • 启动集群
    创建一个网络:docker network create mq-net
    运行命令

    docker run -d --net mq-net \
    -v ${PWD}/mq1/rabbitmq.conf:/etc/rabbitmq/rabbitmq.conf \
    -v ${PWD}/.erlang.cookie:/var/lib/rabbitmq/.erlang.cookie \
    -e RABBITMQ_DEFAULT_USER=xiaowu \
    -e RABBITMQ_DEFAULT_PASS=123321 \
    --name mq1 \
    --hostname mq1 \
    -p 8071:5672 \
    -p 8081:15672 \
    rabbitmq:3.8-management
    
    docker run -d --net mq-net \
    -v ${PWD}/mq2/rabbitmq.conf:/etc/rabbitmq/rabbitmq.conf \
    -v ${PWD}/.erlang.cookie:/var/lib/rabbitmq/.erlang.cookie \
    -e RABBITMQ_DEFAULT_USER=xiaowu \
    -e RABBITMQ_DEFAULT_PASS=123321 \
    --name mq2 \
    --hostname mq2 \
    -p 8072:5672 \
    -p 8082:15672 \
    rabbitmq:3.8-management
    
    docker run -d --net mq-net \
    -v ${PWD}/mq3/rabbitmq.conf:/etc/rabbitmq/rabbitmq.conf \
    -v ${PWD}/.erlang.cookie:/var/lib/rabbitmq/.erlang.cookie \
    -e RABBITMQ_DEFAULT_USER=xiaowu \
    -e RABBITMQ_DEFAULT_PASS=123321 \
    --name mq3 \
    --hostname mq3 \
    -p 8073:5672 \
    -p 8083:15672 \
    rabbitmq:3.8-management
    

镜像模式

镜像集群:本质是主从模式,具备下面的特征:

  • 交换机、队列、队列中的消息会在各个mq的镜像节点之间同步备份
  • 创建队列的节点被称为该队列的主节点,备份到的其它节点叫做该队列的镜像节点
  • 一个队列的主节点可能是另一个队列的镜像节点
  • 所有操作都是主节点完成,然后同步给镜像节点

在普通集群中,一旦创建队列的主机宕机,队列就会不可用。不具备高可用能力。如果要解决这个问题,必须使用官方提供的镜像集群方案

默认情况下,队列只保存在创建该队列的节点上。而镜像模式下,创建队列的节点被称为该队列的主节点,队列还会拷贝到集群中的其它节点,也叫做该队列的镜像节点。

但是,不同队列可以在集群中的任意节点上创建,因此不同队列的主节点可以不同。甚至,一个队列的主节点可能是另一个队列的镜像节点

用户发送给队列的一切请求,例如发送消息、消息回执默认都会在主节点完成,如果是从节点接收到请求,也会路由到主节点去完成。镜像节点仅仅起到备份数据作用

当主节点接收到消费者的ACK时,所有镜像都会删除节点中的数据

总结如下:

  • 镜像队列结构是一主多从(从就是镜像)
  • 所有操作都是主节点完成,然后同步给镜像节点
  • 主宕机后,镜像节点会替代成新的主(如果在主从同步完成前,主就已经宕机,可能出现数据丢失)
  • 不具备负载均衡功能,因为所有操作都会有主节点完成(但是不同队列,其主节点可以不同,可以利用这个提高吞吐量)

镜像模式的配置

镜像模式的配置有3种模式:

ha-modeha-params效果
准确模式exactly队列的副本量count集群中队列副本(主服务器和镜像服务器之和)的数量。count如果为1意味着单个副本:即队列主节点。count值为2表示2个副本:1个队列主和1个队列镜像。换句话说:count = 镜像数量 + 1。如果群集中的节点数少于count,则该队列将镜像到所有节点。如果有集群总数大于count+1,并且包含镜像的节点出现故障,则将在另一个节点上创建一个新的镜像。
all(none)队列在群集中的所有节点之间进行镜像。队列将镜像到任何新加入的节点。镜像到所有节点将对所有群集节点施加额外的压力,包括网络I / O,磁盘I / O和磁盘空间使用情况。推荐使用exactly,设置副本数为(N / 2 +1)。
nodesnode names指定队列创建到哪些节点,如果指定的节点全部不存在,则会出现异常。如果指定的节点在集群中存在,但是暂时不可用,会创建节点到当前客户端连接到的节点。

这里我们以rabbitmqctl命令作为案例来讲解配置语法


exactly模式

rabbitmqctl set_policy ha-two "^two\." '{"ha-mode":"exactly","ha-params":2,"ha-sync-mode":"automatic"}'
  • rabbitmqctl set_policy:固定写法
  • ha-two:策略名称,自定义
  • "^two\.":匹配队列的正则表达式,符合命名规则的队列才生效,这里是任何以two.开头的队列名称
  • '{"ha-mode":"exactly","ha-params":2,"ha-sync-mode":"automatic"}': 策略内容
    • "ha-mode":"exactly":策略模式,此处是exactly模式,指定副本数量
    • "ha-params":2:策略参数,这里是2,就是副本数量为2,1主1镜像
    • "ha-sync-mode":"automatic":同步策略,默认是manual,即新加入的镜像节点不会同步旧的消息。如果设置为automatic,则新加入的镜像节点会把主节点中所有消息都同步,会带来额外的网络开销

all模式

rabbitmqctl set_policy ha-all "^all\." '{"ha-mode":"all"}'
  • ha-all:策略名称,自定义
  • "^all\.":匹配所有以all.开头的队列名
  • '{"ha-mode":"all"}':策略内容
    • "ha-mode":"all":策略模式,此处是all模式,即所有节点都会称为镜像节点

nodes模式

rabbitmqctl set_policy ha-nodes "^nodes\." '{"ha-mode":"nodes","ha-params":["rabbit@nodeA", "rabbit@nodeB"]}'
  • rabbitmqctl set_policy:固定写法
  • ha-nodes:策略名称,自定义
  • "^nodes\.":匹配队列的正则表达式,符合命名规则的队列才生效,这里是任何以nodes.开头的队列名称
  • '{"ha-mode":"nodes","ha-params":["rabbit@nodeA", "rabbit@nodeB"]}': 策略内容
    • "ha-mode":"nodes":策略模式,此处是nodes模式
    • "ha-params":["rabbit@mq1", "rabbit@mq2"]:策略参数,这里指定副本所在节点名称

仲裁队列

仲裁队列:仲裁队列是3.8版本以后才有的新功能,用来替代镜像队列,具备下列特征:

  • 与镜像队列一样,都是主从模式,支持主从数据同步
  • 使用非常简单,没有复杂的配置
  • 主从同步基于Raft协议,强一致

在任意控制台添加一个队列,一定要选择队列类型为Quorum类型
在这里插入图片描述
在任意控制台查看队列:
在这里插入图片描述
可以看到,仲裁队列的 + 2字样。代表这个队列有2个镜像节点

因为仲裁队列默认的镜像数为5。如果你的集群有7个节点,那么镜像数肯定是5;而我们集群只有3个节点,因此镜像数量就是3

Java代码创建仲裁队列

Java代码创建仲裁队列:

@Bean
public Queue quorumQueue() {
    return QueueBuilder
        .durable("quorum.queue") // 持久化
        .quorum() // 仲裁队列
        .build();
}

SpringAMQP连接MQ集群,只需要在yaml中配置即可(注意,这里用address来代替host、port方式

spring:
  rabbitmq:
    addresses: 192.168.1.12:8071, 192.168.1.12:8072, 192.168.1.12:8073
    username: xiaowu
    password: 123321
    virtual-host: /

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1147235.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

私有云:【6】VCenter安装SqlServer

私有云:【6】VCenter安装SqlServer 1、VCenter安装SqlServer1.1、通过模板创建虚拟机1.2、安装sqlserver服务 2、搭建sqlserver群集2.1、安装群集功能2.2、在ad域服务器创建共享文件夹,供集群选举使用 3、创建故障转移群集【只需安装一台即可】3.1、创建…

操作系统 --- 存储器管理

一、简答题 1.存储器管理的基本任务,是为多道程序的并发执行提供良好的存储器环境。请问好的存储器环境”应包含哪几个方面? 答: 2.内存保护是否可以完全由软件实现?为什么? 答:内存保护的主要任务是确保每…

LeetCode热题100——双指针

双指针 1.移动零2.盛最多水的容器3.三数之和 1.移动零 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。 // 题解:使用双指针,其中快指针指向非零元素,慢指针指向首个零元素下…

msvcp120.dll怎么修复,五种方法教你如何修复msvcp120.dll文件

在运行软件时,我们常常会遇到一些错误提示,其中之一就是“由于找不到msvcp120.dll无法继续执行代码”。这个错误通常发生在使用Microsoft Visual C 2013编译的程序运行时。本文将介绍5种修复这个问题的方法,帮助各位解决这个困扰。 方法一、使…

如何使用批量重命名的方法替换重复文件名内容

在文件管理过程中,我们有时会遇到文件名中包含相同部分内容的情况,这不仅会使文件显得混乱,而且还会给文件检索和使用带来不便。为了解决这个问题,我们可以使用云炫文件管理器批量重命名进行批量替换。下面是如何使用这种方法进行…

RT-Thread入门

1、初识RT-Thread RT-Thread,全称是Real Time-Thread,即嵌入式实时多线程操作系统。其基本属性之一是支持多任务,但是允许多任务同时运行,但是并不是意味着处理器在同一时刻真的执行了多个任务。实际上,一个处理器核心…

mac 安装homebrew ,golang

mac 安装homebrew ,golang 安装homebrew安装golang选择 apple arm 版本安装配置环境变量 安装homebrew /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)"回车执行指令后,根据提示操作。具体包括以下提示操作&am…

深度学习(4)---生成式对抗网络(GAN)

文章目录 一、原理讲述1.1 概念讲解1.2 生成模型和判别模型 二、训练过程2.1 训练原理2.2 损失函数 三、应用 一、原理讲述 1.1 概念讲解 1. 生成式对抗网络(Generative Adversarial Network,GAN)是一种深度学习模型,是近年来复杂…

vue vant van-uploader使用compressorjs解决拍照上传的图片被旋转 90 度方法,图片压缩上传

vue vant van-uploader使用compressorjs解决拍照上传的图片被旋转 90 度方法,图片压缩上传_van-uploader 拍照上传服务器后图片翻转-CSDN博客文章浏览阅读3.2k次,点赞4次,收藏6次。van-uploader使用compressorjs解决拍照上传的图片被旋转 90 …

游戏找不到x3daudio1_7.dll无法继续执行的解决方法,快速解决dll问题

x3daudio1_7.dll是一个音频处理库,主要用于实现三维音频渲染。它包含了微软的XAudio2音频API,该API被许多游戏和应用程序用于实现高质量的音频效果。这个库文件主要处理音频的空间定位、响度均衡以及多通道音频输出等功能。在游戏中,它可以为…

08 MIT线性代数-求解Ax=b:可解性与结构Complete Solution of Ax=b

1. 可解的条件 Solvability conditions on b 检验Axb是否可解的方法是对增广矩阵进行行消元。如果矩阵A的行被完全消去的话,则对应的b的分量也要得0 两条关于b的限制条件(等价) 1. if a comb. of rows of A gives zero row, then same comb. of enties of b must …

笔记46:ResNeXt 网络详解

本地笔记地址:D:\work_file\DeepLearning_Learning\03_个人笔记\2.图像处理任务\ResNeXt网络学习 a a a a a a a a a a a a a a

【论文阅读VLDB23】Online Schema Evolution is (Almost) Free for Snapshot Databases

Online Schema Evolution is (Almost) Free for Snapshot Databases 对snapshot DB来说可以几乎在线进行schema的演变。 ABSTRACT 在现有数据库系统中,对在线和事务模式演变的支持仍然具有挑战性。之前处理这种schema 演变基本是patches补丁的方式来做&#xff0…

实战授权码登录流程

我是经常阅读公众号优质文章,也经常体验到公众号的授权登录功能。今天就来实现下,流程图如下 效果图 后端接口 主要用来接收微信服务器推送的公众号用户触发的事件、生成和验证授权码的有效性 解析微信服务器推送的事件通知 public String login(Se…

深度强化学习用于博弈类游戏-基础测试与说明【1】

深度强化学习用于博弈类游戏-基础【1】 1. 强化学习方法2. 强化学习在LOL中的应⽤2.1 环境搭建2.2 游戏特征元素提取1)小地图人物位置:2)人物血量等信息3)在整个图像上寻找小兵、防御塔的位置4)自编码器提取 3. 策略梯度算法简介参考资料 1. 强化学习方法…

工程建筑模板厂家货源,酚醛胶镜面胶合板实用型

作为工程建筑模板厂家,我们提供高品质的酚醛胶镜面胶合板,为建筑行业的模板需求提供可靠的货源。我们的产品以实用型为设计理念,旨在满足各类工程的施工需求并提供出色的性能。我们的酚醛胶镜面胶合板采用优质的木材作为原材料,经…

负载均衡的综合部署练习(hproxy+keepalived和lvs-DR+keepalived+nginx+Tomcat)

一、haproxykeepalived haproxy 2台 20.0.0.21 20.0.0.22 nginx 2台 20.0.0.23 20.0.0.24 客户机 1台 20.0.0.30 这里没有haproxy不是集群的概念,他只是代理服务器。 访问他直接可以直接访问后端服务器 关闭防火墙 安装haproxy和环境: yum in…

数据结构-初识泛型

写在前: 这一篇博客主要来初步的记录以下泛型的相关内容,内容比较琐碎,就不进行目录的整合,后续可能会对泛型这里进行系统性的梳理,此篇博客主要是对泛型有一个简单的认识与理解,需要知晓的内容。 当我调用…

能量管理系统(EMS):新能源储能行业的智能化大脑

导语:能源管理系统(EMS)是新能源储能行业中一种关键的智能化技术。它的作用类似于大脑,能够监控、控制和优化能源系统的运行,为储能设施提供高效稳定的能源管理。本文将介绍能量管理系统的基本概念、功能和应用。 一、…

excel技巧

excel技巧 🍓选中🍓填充🍓日期🍒🍒 日期快捷方式🍒🍒 日期计算🍒🍒时间相减 🍓求和🍓去除小数点🍓美化表格🍒&#x1f352…