Linux网络编程之epoll多路转接服务器

news2025/1/11 1:36:14

Linux网络编程之epoll多路转接服务器

一、epoll的基本概念

epoll是Linux下多路复用IO接口select/poll的增强版本,它能显著提高程序在大量并发连接中只有少量活跃的情况下的系统CPU利用率,因为它会复用文件描述符集合来传递结果而不用迫使开发者每次等待事件之前都必须重新准备要被侦听的文件描述符集合,另一点原因就是获取事件的时候,它无须遍历整个被侦听的描述符集,只要遍历那些被内核IO事件异步唤醒而加入Ready队列的描述符集合就行了。

目前epell是linux大规模并发网络程序中的热门首选模型。

epoll除了提供select/poll那种IO事件的电平触发(Level Triggered)外,还提供了边沿触发(Edge Triggered),这就使得用户空间程序有可能缓存IO状态,减少epoll_wait/epoll_pwait的调用,提高应用程序效率。

可以使用cat命令查看一个进程可以打开的socket描述符上限。

cat /proc/sys/fs/file-max

可以使用ulimit命令查看已经打开的文件描述符。

ulimit -a 	——> 当前用户下的进程,默认打开文件描述符个数,缺省为 1024

在这里插入图片描述

如有需要,可以通过修改配置文件的方式修改该上限值。

sudo vi /etc/security/limits.conf

在文件尾部写入以下配置,soft软限制,hard硬限制。如下图所示。
	* soft nofile 65536
	* hard nofile 100000

在这里插入图片描述

二、epoll相关函数简介

1.int epoll_create(int size);
创建一棵监听红黑树
size:创建的红黑树的监听节点数量。(仅供内核参考。)
返回值:指向新创建的红黑树的根节点的 fd。 
		失败:-1 errno
2.int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
操作监听红黑树
epfd:epoll_create 函数的返回值。 epfd。
op:对该监听红黑数所做的操作。
	EPOLL_CTL_ADD 添加fd到 监听红黑树
	EPOLL_CTL_MOD 修改fd在 监听红黑树上的监听事件
	EPOLL_CTL_DEL 将一个fd 从监听红黑树上摘下(取消监听)

fd:待监听的fd
event:	本质 struct epoll_event 结构体 地址
	成员 events:
		EPOLLIN / EPOLLOUT / EPOLLERR
	成员 data: 联合体(共用体):
		int fd;	  对应监听事件的 fd
		void *ptr;
		uint32_t u32;
		uint64_t u64;		

返回值:成功 0 失败: -1 errno
3.int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);
阻塞监听
epfd:epoll_create 函数的返回值。epfd。
events:传出参数,【数组】, 满足监听条件的 那些 fd 结构体。
maxevents:数组 元素的总个数。 1024struct epoll_event evnets[1024]
timeout:
	-1: 阻塞
	0: 不阻塞
	>0: 超时时间 (毫秒)
返回值:
	> 0: 满足监听的 总个数。 可以用作循环上限。
	0: 没有fd满足监听事件
	-1: 失败。 errno。

三、基于epoll的多路转接服务器

服务器:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <arpa/inet.h>
#include <sys/epoll.h>
#include <errno.h>
#include <ctype.h>

#include "wrap.h"

#define MAXLINE 8192
#define SERV_PORT 8000

#define OPEN_MAX 5000

int main(int argc, char *argv[])
{
    int i, listenfd, connfd, sockfd;
    int  n, num = 0;
    ssize_t nready, efd, res;
    char buf[MAXLINE], str[INET_ADDRSTRLEN];
    socklen_t clilen;

    struct sockaddr_in cliaddr, servaddr;


    listenfd = Socket(AF_INET, SOCK_STREAM, 0);
	
	 //端口复用
    int opt = 1;
    setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
	
    bzero(&servaddr, sizeof(servaddr));
    servaddr.sin_family = AF_INET;
    servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
    servaddr.sin_port = htons(SERV_PORT);
	
    Bind(listenfd, (struct sockaddr *) &servaddr, sizeof(servaddr));
    Listen(listenfd, 20);

	//创建epoll模型, efd指向红黑树根节点
    efd = epoll_create(OPEN_MAX);              
    if (efd == -1)
        perr_exit("epoll_create error");
	
	//tep: epoll_ctl参数  ep[]: epoll_wait参数
    struct epoll_event tep, ep[OPEN_MAX]; 

    tep.events = EPOLLIN;
	//指定lfd的监听时间为"读"
    tep.data.fd = listenfd;           
	
	//将lfd及对应的结构体设置到树上,efd可找到该树
    res = epoll_ctl(efd, EPOLL_CTL_ADD, listenfd, &tep);    
    if (res == -1)
        perr_exit("epoll_ctl error");

    for ( ; ; ) {
        /* epoll为server阻塞监听事件, ep为struct epoll_event类型数组, OPEN_MAX为数组容量, -1表永久阻塞 */
        nready = epoll_wait(efd, ep, OPEN_MAX, -1); 
        if (nready == -1)
            perr_exit("epoll_wait error");

        for (i = 0; i < nready; i++) {
			// 如果不是"读"事件, 继续循环
            if (!(ep[i].events & EPOLLIN))      
                continue;
			
			//判断满足事件的fd是不是lfd
            if (ep[i].data.fd == listenfd) {                
                clilen = sizeof(cliaddr);
				//接受链接
                connfd = Accept(listenfd, (struct sockaddr *)&cliaddr, &clilen);

                printf("received from %s at PORT %d\n", 
                        inet_ntop(AF_INET, &cliaddr.sin_addr, str, sizeof(str)), 
                        ntohs(cliaddr.sin_port));
                printf("cfd %d---client %d\n", connfd, ++num);

                tep.events = EPOLLIN;
				tep.data.fd = connfd;
				//加入红黑树
                res = epoll_ctl(efd, EPOLL_CTL_ADD, connfd, &tep);      
                if (res == -1)
                    perr_exit("epoll_ctl error");

            } else {
				//不是lfd
                sockfd = ep[i].data.fd;
                n = Read(sockfd, buf, MAXLINE);
				
				//读到0,说明客户端关闭链接
                if (n == 0) {
					//将该文件描述符从红黑树摘除
                    res = epoll_ctl(efd, EPOLL_CTL_DEL, sockfd, NULL);  
                    if (res == -1)
                        perr_exit("epoll_ctl error");
					//关闭与该客户端的链接
                    Close(sockfd);                                      
                    printf("client[%d] closed connection\n", sockfd);

                } else if (n < 0) {
					//出错
                    perror("read n < 0 error: ");
					//摘除节点
                    res = epoll_ctl(efd, EPOLL_CTL_DEL, sockfd, NULL);  
                    Close(sockfd);

                } else {
					//实际读到了字节数
                    for (i = 0; i < n; i++)
						//转大写,写回给客户端
                        buf[i] = toupper(buf[i]);                       

                    Write(STDOUT_FILENO, buf, n);
                    Writen(sockfd, buf, n);
                }
            }
        }
    }
    Close(listenfd);
    Close(efd);

    return 0;
}

客户端:

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#include "wrap.h"

#define MAXLINE 8192
#define SERV_PORT 8000

int main(int argc, char *argv[])
{
    struct sockaddr_in servaddr;
    char buf[MAXLINE];
    int sockfd, n;

    sockfd = Socket(AF_INET, SOCK_STREAM, 0);

    bzero(&servaddr, sizeof(servaddr));
    servaddr.sin_family = AF_INET;
    inet_pton(AF_INET, "127.0.0.1", &servaddr.sin_addr);
    servaddr.sin_port = htons(SERV_PORT);

    Connect(sockfd, (struct sockaddr *)&servaddr, sizeof(servaddr));

    while (fgets(buf, MAXLINE, stdin) != NULL) {
        Write(sockfd, buf, strlen(buf));
        n = Read(sockfd, buf, MAXLINE);
        if (n == 0) {
            printf("the other side has been closed.\n");
            break;
        }
        else
            Write(STDOUT_FILENO, buf, n);
    }
    Close(sockfd);

    return 0;
}

四、epoll的ET、LT两种模式

EPOLL事件有两种模型:
Edge Triggered (ET) 边缘触发只有数据到来才触发,不管缓存区中是否还有数据。
Level Triggered (LT) 水平触发只要有数据都会触发。

4.1 父子进程读写两种模式对比:

#include <stdio.h>
#include <stdlib.h>
#include <sys/epoll.h>
#include <errno.h>
#include <unistd.h>

#define MAXLINE 10

int main(int argc, char *argv[])
{
    int efd, i;
    int pfd[2];
    pid_t pid;
    char buf[MAXLINE], ch = 'a';

    pipe(pfd);
    pid = fork();

    if (pid == 0) {             //子 写
        close(pfd[0]);
        while (1) {
            //aaaa\n
            for (i = 0; i < MAXLINE/2; i++)
                buf[i] = ch;
            buf[i-1] = '\n';
            ch++;
            //bbbb\n
            for (; i < MAXLINE; i++)
                buf[i] = ch;
            buf[i-1] = '\n';
            ch++;
            //aaaa\nbbbb\n
            write(pfd[1], buf, sizeof(buf));
            sleep(5);
        }
        close(pfd[1]);

    } else if (pid > 0) {       //父 读
        struct epoll_event event;
        struct epoll_event resevent[10];      //epoll_wait就绪返回event
        int res, len;

        close(pfd[1]);
        efd = epoll_create(10);

        event.events = EPOLLIN | EPOLLET;     // ET 边沿触发
       // event.events = EPOLLIN;             // LT 水平触发 (默认)
        event.data.fd = pfd[0];
        epoll_ctl(efd, EPOLL_CTL_ADD, pfd[0], &event);

        while (1) {
            res = epoll_wait(efd, resevent, 10, -1);
            printf("res %d\n", res);
            if (resevent[0].data.fd == pfd[0]) {
                len = read(pfd[0], buf, MAXLINE/2);
                write(STDOUT_FILENO, buf, len);
            }
        }

        close(pfd[0]);
        close(efd);

    } else {
        perror("fork");
        exit(-1);
    }

    return 0;
}

4.2 服务器客户端模型

服务器:

#include <stdio.h>
#include <string.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <signal.h>
#include <sys/wait.h>
#include <sys/types.h>
#include <sys/epoll.h>
#include <unistd.h>

#define MAXLINE 10
#define SERV_PORT 9000

int main(void)
{
    struct sockaddr_in servaddr, cliaddr;
    socklen_t cliaddr_len;
    int listenfd, connfd;
    char buf[MAXLINE];
    char str[INET_ADDRSTRLEN];
    int efd;

    listenfd = socket(AF_INET, SOCK_STREAM, 0);

    bzero(&servaddr, sizeof(servaddr));
    servaddr.sin_family = AF_INET;
    servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
    servaddr.sin_port = htons(SERV_PORT);

    bind(listenfd, (struct sockaddr *)&servaddr, sizeof(servaddr));

    listen(listenfd, 20);

    struct epoll_event event;
    struct epoll_event resevent[10];
    int res, len;

    efd = epoll_create(10);
    event.events = EPOLLIN | EPOLLET;     /* ET 边沿触发 */
    //event.events = EPOLLIN;             /* 默认 LT 水平触发 */

    printf("Accepting connections ...\n");

    cliaddr_len = sizeof(cliaddr);
    connfd = accept(listenfd, (struct sockaddr *)&cliaddr, &cliaddr_len);
    printf("received from %s at PORT %d\n",
            inet_ntop(AF_INET, &cliaddr.sin_addr, str, sizeof(str)),
            ntohs(cliaddr.sin_port));

    event.data.fd = connfd;
    epoll_ctl(efd, EPOLL_CTL_ADD, connfd, &event);

    while (1) {
        res = epoll_wait(efd, resevent, 10, -1);

        printf("res %d\n", res);
        if (resevent[0].data.fd == connfd) {
            len = read(connfd, buf, MAXLINE/2);         //readn(500)   
            write(STDOUT_FILENO, buf, len);
        }
    }

    return 0;
}

客户端:

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <netinet/in.h>

#define MAXLINE 10
#define SERV_PORT 9000

int main(int argc, char *argv[])
{
    struct sockaddr_in servaddr;
    char buf[MAXLINE];
    int sockfd, i;
    char ch = 'a';

    sockfd = socket(AF_INET, SOCK_STREAM, 0);

    bzero(&servaddr, sizeof(servaddr));
    servaddr.sin_family = AF_INET;
    inet_pton(AF_INET, "127.0.0.1", &servaddr.sin_addr);
    servaddr.sin_port = htons(SERV_PORT);

    connect(sockfd, (struct sockaddr *)&servaddr, sizeof(servaddr));

    while (1) {
        //aaaa\n
        for (i = 0; i < MAXLINE/2; i++)
            buf[i] = ch;
        buf[i-1] = '\n';
        ch++;
        //bbbb\n
        for (; i < MAXLINE; i++)
            buf[i] = ch;
        buf[i-1] = '\n';
        ch++;
        //aaaa\nbbbb\n
        write(sockfd, buf, sizeof(buf));
        sleep(5);
    }
    close(sockfd);

    return 0;
}
ET模式:
	边沿触发:
	缓冲区剩余未读尽的数据不会导致 epoll_wait 返回。 新的事件满足,才会触发。
		struct epoll_event event;
		event.events = EPOLLIN | EPOLLET;
LT模式:
	水平触发 -- 默认采用模式。
	缓冲区剩余未读尽的数据会导致 epoll_wait 返回。

五、epoll的ET非阻塞模式

readn调用的阻塞,比如设定读500个字符,但是只读到498,完事儿阻塞了,等另剩下的2个字符,然而在server代码里,一旦read变为readn阻塞了,它就不会被唤醒了,因为epoll_wait因为readn的阻塞不会循环执行,读不到新数据。有点死锁的意思,差俩字符所以阻塞,因为阻塞,读不到新字符。

LT(level triggered): LT是缺省的工作方式,并且同时支持block和no-block socket。在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你的,所以,这种模式编程出错误可能性要小一点。传统的select/poll都是这种模型的代表。
ET(edge-triggered): ET是高速工作方式,只支持no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知。请注意,如果一直不对这个fd作IO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once)。

用fcntl设置阻塞和非阻塞。

非阻塞epoll的客户端服务器:
服务器:

#include <stdio.h>
#include <string.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/wait.h>
#include <sys/types.h>
#include <sys/epoll.h>
#include <unistd.h>
#include <fcntl.h>

#define MAXLINE 10
#define SERV_PORT 8000

int main(void)
{
    struct sockaddr_in servaddr, cliaddr;
    socklen_t cliaddr_len;
    int listenfd, connfd;
    char buf[MAXLINE];
    char str[INET_ADDRSTRLEN];
    int efd, flag;

    listenfd = socket(AF_INET, SOCK_STREAM, 0);

    bzero(&servaddr, sizeof(servaddr));
    servaddr.sin_family = AF_INET;
    servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
    servaddr.sin_port = htons(SERV_PORT);

    bind(listenfd, (struct sockaddr *)&servaddr, sizeof(servaddr));

    listen(listenfd, 20);

    ///
    struct epoll_event event;
    struct epoll_event res_event[10];
    int res, len;

    efd = epoll_create(10);

    event.events = EPOLLIN | EPOLLET;     /* ET 边沿触发,默认是水平触发 */

    //event.events = EPOLLIN;
    printf("Accepting connections ...\n");
    cliaddr_len = sizeof(cliaddr);
    connfd = accept(listenfd, (struct sockaddr *)&cliaddr, &cliaddr_len);
    printf("received from %s at PORT %d\n",
            inet_ntop(AF_INET, &cliaddr.sin_addr, str, sizeof(str)),
            ntohs(cliaddr.sin_port));

    flag = fcntl(connfd, F_GETFL);          /* 修改connfd为非阻塞读 */
    flag |= O_NONBLOCK;
    fcntl(connfd, F_SETFL, flag);

    event.data.fd = connfd;
    epoll_ctl(efd, EPOLL_CTL_ADD, connfd, &event);      //将connfd加入监听红黑树
    while (1) {
        printf("epoll_wait begin\n");
        res = epoll_wait(efd, res_event, 10, -1);        //最多10个, 阻塞监听
        printf("epoll_wait end res %d\n", res);

        if (res_event[0].data.fd == connfd) {
            while ((len = read(connfd, buf, MAXLINE/2)) >0 )    //非阻塞读, 轮询
                write(STDOUT_FILENO, buf, len);
        }
    }

    return 0;
}

客户端:

/* client.c */
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <netinet/in.h>

#define MAXLINE 10
#define SERV_PORT 8000

int main(int argc, char *argv[])
{
    struct sockaddr_in servaddr;
    char buf[MAXLINE];
    int sockfd, i;
    char ch = 'a';

    sockfd = socket(AF_INET, SOCK_STREAM, 0);

    bzero(&servaddr, sizeof(servaddr));
    servaddr.sin_family = AF_INET;
    inet_pton(AF_INET, "127.0.0.1", &servaddr.sin_addr);
    servaddr.sin_port = htons(SERV_PORT);

    connect(sockfd, (struct sockaddr *)&servaddr, sizeof(servaddr));

    while (1) {
        //aaaa\n
        for (i = 0; i < MAXLINE/2; i++)
            buf[i] = ch;
        buf[i-1] = '\n';
        ch++;
        //bbbb\n
        for (; i < MAXLINE; i++)
            buf[i] = ch;
        buf[i-1] = '\n';
        ch++;
        //aaaa\nbbbb\n
        write(sockfd, buf, sizeof(buf));
        sleep(10);
    }

    close(sockfd);

    return 0;
}

其实就是服务器多了这几行:
在这里插入图片描述

结论:
	epoll 的 ET模式, 高效模式,但是只支持 非阻塞模式。 --- 忙轮询。
		struct epoll_event event;
		event.events = EPOLLIN | EPOLLET;
		epoll_ctl(epfd, EPOLL_CTL_ADD, cfd, &event);	
		int flg = fcntl(cfd, F_GETFL);	
		flg |= O_NONBLOCK;
		fcntl(cfd, F_SETFL, flg);

优点:
	高效。突破1024文件描述符。
缺点:
	不能跨平台。 Linux。

后面使用epoll就用这种非阻塞的模式。当使用非阻塞读时,读取数据需要轮询。
比如使用readn的时候,数据没读够,因为非阻塞,跑了,想读剩下的,就得轮询。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/114359.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于自动模糊聚类的图像分割研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

kubernetes之数据存储详解

目录 一、存储卷的作用 二、数据卷概述 三、数据卷emptyDir 四、数据卷hostPath 五、数据卷&#xff1a;NFS 六、持久卷概述 6.1PV静态供给 6.2PV 动态供给(StorageClass) 6.3 PV 生命周期 6.3.1 ACCESS MODES (访问模式) 6.3.2 RECLAIM POLICY (回收策略) 6.3.3 S…

【Redis场景2】缓存更新策略(双写一致)

在业务初始阶段&#xff0c;流量很少的情况下&#xff0c;通过直接操作数据是可行的操作&#xff0c;但是随着业务量的增长&#xff0c;用户的访问量也随之增加&#xff0c;在该阶段自然需要使用一些手段(缓存)来减轻数据库的压力&#xff1b;所谓遇事不决&#xff0c;那就加一…

vue 基础入门:vue 的调试工具

1. 安装 vue-devtools 调试工具 vue 官方提供的 vue-devtools 调试工具&#xff0c;能够方便开发者对 vue 项目进行调试与开发。 Chrome 浏览器在线安装 vue-devtools &#xff1a;https://chrome.google.com/webstore/detail/vuejs-devtools/nhdogjmejiglipccpnnnanhbledajb…

六、应用层(五)万维网(www)

目录 5.1 WWW的概念与组成结构 5.2 超文本传输协议&#xff08;HTTP&#xff09; 5.2.1 HTTP的操作过程 5.2.2 HTTP的特点 5.2.3 HTTP的报文结构 5.1 WWW的概念与组成结构 万维WWW&#xff08;World Wide Web&#xff09;简称web并非某种特殊的计算机网络。它…

商城管理系统

商城管理系统 文章目录商城管理系统要求&#xff1a;项目结构图AddProductServlet添加商品&#xff1a;AddToCart将商品添加至购物车ClearCart清空购物车DeleteProductServlet删除商品EditProductServlet修改商品FindProductServlet查找商品LoginServlet登录ProductControl商品…

初级C语言之【数组】

&#x1f996;作者&#xff1a;学写代码的恐龙 &#x1f996;博客主页&#xff1a;学写代码的恐龙博客主页 &#x1f996;专栏&#xff1a;【初级c语言】 &#x1f996;语录&#xff1a;❀未来的你&#xff0c;一定会感谢现在努力奋斗的自己❀ 初级C语言之【数组】一&#xff…

Swagger在线API文档

Swagger 解决的问题 随着互联网技术的发展&#xff0c;现在的网站架构基本都由原来的后端渲染&#xff0c;变成了前后端分离的形态&#xff0c;而且前端技术和后端技术在各自的道路上越走越远。前端和后端的唯一联系&#xff0c;变成了 API 接口&#xff0c;所以 API 文档变成…

C++进阶---C++11

本篇主要是介绍C11中新添加的一些特性。 文章目录 1.C11简介2.列表初始化3.变量类型推导4.新增容器---静态数组array5.右值引用6.lambda表达式7.包装器8.新的类功能9.可变参数模板一、C11简介 在2003年C标准委员会曾经提交了一份技术勘误表(简称TC1)&#xff0c;使得C03这个名字…

Python高阶函数装饰器

“ 从CANoe vTESTstudio版本7开始&#xff0c;支持使用python编辑器编写python脚本。其中CANoe提供了许多API接口给python使用&#xff0c;大大扩展了python的可用性。在python中使用装饰器定义capl中的事件处理程序&#xff08;on key/on timer等&#xff09;。对此我们有必要…

C语言—宏定义

宏定义的作用是替换&#xff0c;再复杂也只能替换&#xff0c;不能用做计算&#xff1b; 一个源文件将另一个源文件的全部内容包含进来&#xff1b; 条件编译&#xff1b; 不带参数的宏定义&#xff1a; #include <stdio.h> #define PI 3.14int main() {printf("…

聊聊Redis消息队列-实现异步秒杀

一、前言 消息队列&#xff08;Message Queue&#xff09;, 字面意思就是存放消息的队列&#xff0c;最简单的消息队列模型包括3个角色&#xff1a; 消息队列&#xff1a;存储和管理消息&#xff0c;也被称为消息代理&#xff08;Message Broker&#xff09;;生产者&#xff…

Shell编程补充

Shell编程补充shell的变量定义变量的单双引号的不同输出变量父子shellshell子串BASHshell子串的用法shell统计变量长度输出程序运行时间结论:shell扩展变量用于处理变量值的创建子shell(进程列表)查看是否开启子shell在运行内置命令,外置命令shell编程总结shell的变量 定义变量…

小黑实习debug中遇到了函数式编程的混乱,特此进行的日常积累:python函数积累1

函数参数中有默认值&#xff0c;在函数内部会创建一块区域并维护这个默认值 # 在函数内存中会维护一块区域存储 [1,2,666,666,666] 100010001 def func(a1,a2[]):a2.append(666)print(a1,a2)func(100) func(1000)100 [666] 1000 [666, 666] def func(a1,a2[]):a2.append(666…

【nowcoder】笔试强训Day7

目录 一、选择题 二、编程题 2.1Fibonacci数列 2.2合法括号序列判断 一、选择题 1.JAVA属于&#xff08; &#xff09;。 A 操作系统 B 办公软件 C 数据库系统 D 计算机语言 计算机软件主要分为系统软件与应用软件两大类。系统软件主要包括操作系统、语言处理系统、数…

three.js之形状缓冲几何体

文章目录简介例子解释其他圆弧矩形专栏目录请点击 简介 Shape用来定义一个二维形状平面 官网常常与ShapeGeometry(形状缓冲几何体)搭配使用 官网&#xff0c;我们可以下运行下面的例子 例子 <!DOCTYPE html> <html lang"en"><head><meta cha…

玩转GPT--在线文本生成项目[可入坑~科普系列]

文章目录前言效果页面说明文字个数top_KTop_Ptemperature聊天上下文关联记忆项目部署获取项目获取模型运行彩蛋总结前言 没办法&#xff0c;最近ChatGPT杀疯了&#xff0c;没忍住&#xff0c;还是想look&#xff0c;look。没办法&#xff0c;哪个帅小伙能够忍受的了一个可以和…

数学知识---数论(质数和约数)

文章目录 1.质数1.1质数的判定---试除法1.2分解质因数---试除法1.3筛质数2.约数2.1试除法求约数2.2约数个数2.3约数之和2.4最大公约数---欧几里得算法(辗转相除法)1.质数 质数是针对所有大于1的自然数定义的,在大于1的整数中,如果只包含1和本身这两个约数,就被定义成为质…

【SpringCloud Alibaba】 初始化Sentinel

Sentinel 概念 特征 主要特征 开源生态​ 开启控制台 初始化工程 Sentinel 概念 分布式系统的流量防卫兵。随着微服务的流行&#xff0c;服务和服务之间的稳定性变得越来越重要。Sentinel 以流量为切入点&#xff0c;从流量控制、流量路由、熔断降级、系统自适应过载保护…

Biotin-PEG-NH2,Biotin-PEG-amine,生物素-PEG-氨基材料改性用化学试剂

英文名称&#xff1a;Biotin-PEG-NH2&#xff0c;Biotin-PEG-amine 中文名称&#xff1a;生物素-聚乙二醇-氨基 Biotin-PEG-NH2是氨基化PEG中的一种&#xff0c;他可以用于材料改性&#xff1b;氨基和很多基团可以反应&#xff0c;如&#xff1a;羧基&#xff0c;活性酯&…