【随机过程】布朗运动

news2024/11/15 21:49:46

这里写目录标题

  • Brownian motion

Brownian motion

The brownian motion 1D and brownian motion 2D functions, written with the cumsum command and without for loops, are used to generate a one-dimensional and two-dimensional Brownian motion, respectively.
使用cumsum命令编写的布朗运动1D函数和不带for循环的布朗运动2D函数分别生成一维和二维布朗运动。

These Wiener processes are characterized by normal-centered increments with variance h, where h is the time increment, generated by the command randn(1,n)*sqrt(h).
这些维纳过程的特征是方差为h的正态中心增量,其中h是时间增量,由命令randn(1,n)*sqrt(h)生成。

We consider a time interval T = 1000, divided into n = 1000 increments of value h = 1.
我们考虑一个时间间隔T = 1000,分成n = 1000个值h = 1的增量。

Figure1 shows, for example, two trajectories W(t) of a one-dimensional Wiener process.
例如,图1显示了一维维纳过程的两条轨迹W(t)。

在这里插入图片描述Figure 1 { Two examples of trajectories as a function of the time t of a Wiener process W(t) in one
dimension.
图1{两个关于一维维纳过程W(t)时间t的轨迹函数的例子。

Figure 2,on the other hand, shows two examples of a two-dimensional Brownian motion trajectory, this time as a function of the X and Y spatial coordinates.
另一方面,图2显示了两个二维布朗运动轨迹的例子,这一次是X和Y空间坐标的函数。

在这里插入图片描述
Figure 2 -Two examples of trajectories of a two dimensional Wiener process in the plane XY .
图2-在XY平面上二维维纳过程的轨迹的两个例子。

Given N (number of steps), M (number of trajectories) and T (maximum of the time interval),
we generate a matrix W all containing M trajectories of the Brownian motion in one dimension
on the interval [0; T] with a discretization step h = T=N.
给定N(步数),M(轨迹数)和T(时间间隔的最大值),我们生成一个矩阵W,其中包含布朗运动在一维中的M个轨迹,在区间[0;T],离散步长h = T=N。

Figure 3 shows M = 10; 100; 1000 trajectories over the interval [0; 10] with N = 1000 steps.
图3显示M = 10;100;在区间[0;10] N = 1000步。

在这里插入图片描述
Figure 3 { M = 10; 100; 1000 (from left to right) trajectories of a one-dimensional Wiener process
over the time interval [0; 10] with N = 1000 discretisation steps.
图3 {M = 10;100;1000个(从左到右)一维维纳过程在时间区间[0;10], N = 1000离散步长。

We simulate M = 1000 trajectories over the interval [0; 10]. Figure 4 shows the mean and
the variance over time of these trajectories.
我们在区间[0;10]。图4显示了这些轨迹随时间的平均值和方差。

在这里插入图片描述
Figure 4 { Mean and variance of M = 1000 trajectories of a Brownian motion in one dimension.
图4 {M = 1000条布朗运动轨迹在一维中的均值和方差。

In contrast, figure 5 shows the expectation valuesE[W(t)], E[W(t)2] et E[W(t)4] obtained numerically as a function of time.
与此相反,图5给出了期望值E[W(t)]、E[W(t) 2]和E[W(t) 4]作为时间函数的数值计算结果。

The first moment corresponds exactly to the average.
第一个力矩正好对应于平均值。

In the presence of a zero mean, the variance is equivalent to the moment E[W(t)2].
在均值为零的情况下,方差等于矩E[W(t) 2]。

The red lines in each panel of Figure 5 show that the equalities E[W(t)] = 0, E[W(t)2] = t, and E[W(t)4] = 3t2 are satisfied.
图5中每个面板中的红线表示满足等式E[W(t)] = 0、E[W(t) 2] = t和E[W(t) 4] = 3t 2。

在这里插入图片描述Figure 5 { Expectation values E[W(t)], E[W(t)2] and E[W(t)4] calculated numerically and compared with the curves (in red) expected theoretically.
图5{数值计算的期望值E[W(t)]、E[W(t) 2]、E[W(t) 4]与理论期望曲线(红色)对比。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1141348.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JVM虚拟机:对象在内存中的存储布局

本文重点 在前面的过程中,我们学习了对象创建过程,那么一个对象在内存中的布局是什么样的呢? 对象在内存中的存储布局 普通对象 当我们创建一个对象的时候,它由三部分组成,分别为对象头(MarkWord+class指针(指向class对象)),实例数据(对象的成员变量),填充。如果…

C++——C++入门(二)

C 前言一、引用引用概念引用特性常引用使用场景传值、传引用效率比较值和引用的作为返回值类型的性能比较 引用和指针的区别 二、内联函数概念特性知识点提升 三、auto关键字类型别名思考auto简介auto的使用细则auto不能推导的场景 四、基于范围的for循环范围for的语法范围for的…

Linux操作系统的基础IO

目录 系统文件IOopen函数0 & 1 & 2文件描述符的分配规则重定向输入重定向输出重定向追加重定向dup2 FILE 文件系统inode 软硬链接软链接硬链接 动态库和静态库动静态库的命名方式静态库制作一个库使用库 动态库制作一个库使用库 系统文件IO open函数 int open(const …

tftp服务的搭建

TFTP服务的搭建 1 先更新一下apt包 sudo apt-get update2 服务器端(虚拟机上)安装 TFTP相关软件 sudo apt-get install xinetd tftp tftpd -y3 创建TFTP共享目录 mkdir tftp_sharetftp_shaer的路径是/home/cwz/tftp_share 3.1 修改共享目录的权限 sudo chmod -R 777 tftp…

网络基础-2

IEEE制定了一个名为GARP的协议框架,该框架协议包含了两个具体协议,GMRP和GVRP。GVRP可以大大降低VLAN配置过程中的手工的工作量。 IP本身是一个协议文件的名称,该协议主要定义阐释了IP报文的格式。 类型网络号位数网络号个数主机号位数每个…

element-ui vue2 iframe 嵌入外链新解

效果如图 实现原理 在路由中通过 props 传值 {path: /iframe,component: Layout,meta: { title: 小助手, icon: example },children: [{path: chatglm,name: chatglm,props: { name: chatglm,url: https://chatglm.cn },component: () > import(/views/iframe/common),me…

【代码思路】2023mathorcup 大数据数学建模B题 电商零售商家需求预测及库存优化问题

各位同学们好,我们之前已经发布了第一问的思路视频,然后我们现在会详细的进行代码和结果的一个讲解,然后同时我们之后还会录制其他小问更详细的思路以及代码的手把手教学。 大家我们先看一下代码这一部分,我们采用的软件是Jupyte…

DBA笔记(1)

目录 1、rpm yum 命令的使用,参数的含义 rpm命令: yum命令: 2、上传镜像至虚拟机搭建本地yum源 3、chown chomd 命令每一个参数的含义 chown命令: chmod命令: 4、fdisk partd 硬盘分区命令用法 fdisk命令&am…

Pytest单元测试框架生成HTML测试报告及优化的步骤

本文主要介绍了Pytest单元测试框架生成HTML测试报告及优化的步骤,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下 一、安装插件 要生成html类型的报告,需要使用pytest-html插件,可…

古剑奇谭木语人氪金最强阵容,土豪配置

古剑奇谭木语人是一款3D回合制RPG手游,以其精湛的古风画质、跌宕起伏的剧情和丰富多样的玩法而闻名。游戏中拥有许多强大的角色,每个角色都拥有独特的技能和机制。为了发挥出最大的实力,我们需要将角色搭配成一支强大的阵容。以下是当前版本中…

Beego之Beego简介和安装

1、beego简介 1.1 Beego简介 Beego是一个快速开发 Go 应用的 HTTP 框架,他可以用来快速开发 API、Web 及后端服务等各种应用,是一个 RESTful 的框架,主要设计灵感来源于tornado、sinatra和 flask 这三个框架,但是结合了 Go 本身…

释放搜索潜力:基于ES(ElasticSearch)打造高效的语义搜索系统,让信息尽在掌握[1.安装部署篇],支持Linux/Windows部署安装

搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术细节以及项目实战(含码源) 专栏详细介绍:搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术…

Spring Authorization Server 1.1 扩展实现 OAuth2 密码模式与 Spring Cloud 的整合实战

目录 前言无图无真相创建数据库授权服务器maven 依赖application.yml授权服务器配置AuthorizationServierConfigDefaultSecutiryConfig 密码模式扩展PasswordAuthenticationTokenPasswordAuthenticationConverterPasswordAuthenticationProvider JWT 自定义字段自定义认证响应认…

Python —— UI自动化用例前置处理日志封装

1、UI自动化用例增加前置 1、fixture(夹具)的使用 前置顾名思义是在执行测试用例之前做的一些事情,在自动化测试时会碰到用例执行前需要做一些前置操作,以及用例执行后需要做一些后置操作,比如登录、退出等&#xff…

Redis(04)| 数据结构-压缩列表

压缩列表的最大特点,就是它被设计成一种内存紧凑型的数据结构,占用一块连续的内存空间,不仅可以利用 CPU 缓存,而且会针对不同长度的数据,进行相应编码,这种方法可以有效地节省内存开销。 但是,…

如何绘制【逻辑回归】中threshold参数的学习曲线

threshold参数的意义是通过筛选掉低于threshold的参数,来对逻辑回归的特征进行降维。 首先导入相应的模块: from sklearn.linear_model import LogisticRegression as LR from sklearn.datasets import load_breast_cancer from sklearn.model_selecti…

docker应用部署---nginx部署的配置

1. 搜索nginx镜像 docker search nginx2. 拉取nginx镜像 docker pull nginx3. 创建容器,设置端口映射、目录映射 # 在/root目录下创建nginx目录用于存储nginx数据信息 mkdir ~/nginx cd ~/nginx mkdir conf cd conf# 在~/nginx/conf/下创建nginx.conf文件,粘贴下…

在windows服务器上部署一个单机项目以及前后端分离项目

目录 一. 单机项目在windows服务器上的部署 1.1 在本机上测试项目无误 1.1.1 在数据库中测试sql文件没问题 1.1.2 在tomcat中测试war文件无误 1.1.3 测试完成后,进入浏览器运行单机项目确保无误 1.2 在windows服务器中运行项目 二. 前后端分离项目在服务器上…

使用GHS和Renesas E2调试RH850 1372

文章目录 前言工程配置工程调试总结 前言 RH850系列和其他芯片一样,除了Lauterbach,Isystem之外,也有便宜的刷写/调试器,如E2,E1。本文介绍利用E2调试器,联合GreenHills编译器对1372芯片调试 工程配置 在开始调试之前&#xff…

【Java 进阶篇】Java Request 获取请求行数据详解

在Java Web开发中,获取HTTP请求的请求行数据是一个常见的任务。HTTP请求的请求行包含了一些重要的信息,如请求方法、请求URL和HTTP协议版本。在Java中,可以使用HttpServletRequest对象来获取请求行数据。本文将详细解释如何使用Java获取HTTP请…