释放搜索潜力:基于ES(ElasticSearch)打造高效的语义搜索系统,让信息尽在掌握[1.安装部署篇--简洁版],支持Linux/Windows部署安装

news2025/1/12 19:04:23

在这里插入图片描述
搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术细节以及项目实战(含码源)

在这里插入图片描述
专栏详细介绍:搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术细节以及项目实战(含码源)

前人栽树后人乘凉,本专栏提供资料:

  1. 推荐系统算法库,包含推荐系统经典及最新算法讲解,以及涉及后续业务落地方案和码源
  2. 本专栏会持续更新业务落地方案以及码源。同时我也会整理总结出有价值的资料省去你大把时间,快速获取有价值信息进行科研or业务落地帮助你快速完成任务落地,以及科研baseline

释放搜索潜力:基于ES(ElasticSearch)打造高效的语义搜索系统,让信息尽在掌握[1.安装部署篇–简洁版],支持Linux/Windows部署安装

  • 效果展示

PaddleNLP Pipelines 是一个端到端智能文本产线框架,面向 NLP 全场景为用户提供低门槛构建强大产品级系统的能力。本项目将通过一种简单高效的方式搭建一套语义检索系统,使用自然语言文本通过语义进行智能文档查询,而不是关键字匹配。

释放搜索潜力:基于ES打造高效的语义搜索系统,让信息尽在掌握

基于ES(ElasticSearch)打造高效的语义搜索系统效果展示链接

  • 点击链接进行跳转:

释放搜索潜力:基于ES(ElasticSearch)打造高效的语义搜索系统,让信息尽在掌握[1.安装部署篇—完整版],支持Linux/Windows部署安装

释放搜索潜力:基于ES(ElasticSearch)打造高效的语义搜索系统,让信息尽在掌握[2.项目讲解篇],支持Linux/Windows部署安装

A1.Windows下搭建语义检索系统

conda activate temp_es
e:
cd /temp_ES/PaddleNLP-develop/pipelines

腾讯镜像:-i https://mirrors.cloud.tencent.com/pypi/simple

pip list版本:

paddle-pipelines 0.6.0
paddlenlp 2.6.0
paddlepaddle 2.5.1
streamlit 1.11.1

pip install streamlit1.11.1 -i https://mirrors.cloud.tencent.com/pypi/simple
pip install altair
4.2.2 -i https://mirrors.cloud.tencent.com/pypi/simple

A1.1运行环境安装

git clone https://github.com/tvst/htbuilder.git
cd htbuilder/
python setup.py  install

A1.2 paddlenlp安装(包含了paddlenlp)

pip install paddlenlp==2.6.0 -i https://mirrors.cloud.tencent.com/pypi/simple 

#pip install --upgrade paddle-pipelines -i https://pypi.tuna.tsinghua.edu.cn/simple


#或者源码进行安装最新版本
cd ${HOME}/PaddleNLP/pipelines/
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
python setup.py install

A1.3下载pipelines源代码:github下载 or 手动下载

git clone https://github.com/PaddlePaddle/PaddleNLP.git
cd PaddleNLP/pipelines

A1.4 运行案例查看效果

* 我们建议在 GPU 环境下运行本示例,运行速度较快
```python examples/semantic-search/semantic_search_example.py --device gpu```

* 如果只有 CPU 机器,安装CPU版本的Paddle后,可以通过 --device 参数指定 cpu 即可, 运行耗时较长
```python examples/semantic-search/semantic_search_example.py --device cpu```

模型相关修改见3.3

A2.ES相关配置

A2.1 版本安装 ES版本提前官网下载好即可,放在对应路径,进入虚拟环境

官网:https://www.elastic.co/cn/downloads/elasticsearch

https://blog.csdn.net/sinat_39620217/article/details/133984629

A2.2可视化工具Kibana

elasticsearch可视化工具Kibana:为了更好的对数据进行管理,可以使用Kibana可视化工具进行管理和分析,下载链接为Kibana,下载完后解压,直接双击运行 bin\kibana.bat即可。

链接:http://localhost:5601/app/home

A2.3 ES修改:config

  • 需要编辑config/elasticsearch.yml,在末尾添加:elasticsearch.yml 把xpack.security.enabled 设置成false,

    xpack.security.enabled: false

    然后直接双击bin(右击管理员)目录下的elasticsearch.bat即可启动(elasticsearch-8.3.3\bin\elasticsearch.bat)。

  • Elastic search 日志显示错误 exception during geoip databases update

    ingest.geoip.downloader.enabled: false
    
#查看es是否成功启动
curl http://localhost:9200/_aliases?pretty=true

A2.4文档数据写入ann索引库(重点)

官网直接给这条语句,但会报错的,需要修改一下参数。

python utils/offline_ann.py --index_name dureader_robust_query_encoder 
  • 可行命令:
python utils/offline_ann.py --index_name dureader_robust_query_encoder --doc_dir data/dureader_dev --search_engine elastic --embed_title True --delete_index --device cpu --query_embedding_model rocketqa-zh-nano-query-encoder --passage_embedding_model rocketqa-zh-nano-para-encoder --embedding_dim 312
  • 关注三个参数
    • query_embedding_model rocketqa-zh-nano-query-encoder
    • passage_embedding_model rocketqa-zh-nano-para-encoder
    • embedding_dim 312
      这里都使用nano版本模型,向量维度312

(尝试过可以换成base模型,768维度,需要注意的是:启动 RestAPI 模型服务的时候,这三个参数一定要跟这里一致,否则报错,或者检索无效)

  • 查看es中是否已经是有数据:
curl http://localhost:9200/dureader_robust_query_encoder/_search
  • 如果需要重新写入数据,则需要先删除索引:
curl -XDELETE http://localhost:9200/dureader_robust_query_encoder
  • 基于Kibana查看

A3.启动Rest API模型服务

这里要用要用anaconda powershell,不能用Anaconda prompt !!!

这里要用anaconda powershell !!!

这里要用anaconda powershell !!!

#指定语义检索系统的Yaml配置文件,Linux/macos
export PIPELINE_YAML_PATH=rest_api/pipeline/semantic_search.yaml
#指定语义检索系统的Yaml配置文件,Windows powershell
$env:PIPELINE_YAML_PATH='rest_api/pipeline/semantic_search.yaml'
# 使用端口号 8891 启动模型服务
python rest_api/application.py 8891
#主要关注这三个参数:
#embedding_dim: 312
#query_embedding_model: rocketqa-zh-nano-query-encoder
#passage_embedding_model: rocketqa-zh-nano-para-encoder
#后面Ranker的model_name_or_path不用跟这里一致

成功显示:端口链接显示

A4.启动WebUI

streamlit安装

pip install streamlit==1.11.1 -i https://mirrors.cloud.tencent.com/pypi/simple 

#anaconda powershell
#配置模型服务地址
$env:API_ENDPOINT='http://127.0.0.1:8891'
#在指定端口 8502 启动 WebUI
python -m streamlit run ui/webapp_semantic_search.py --server.port 8502
  • 本地打开这个网页可以使用语义检索系统了:
    http://127.0.0.1:8502

http://localhost:8502/

A5. 数据更新

数据更新的方法有两种,第一种使用前面的 utils/offline_ann.py进行数据更新,另一种是使用前端界面的文件上传进行数据更新,支持txt,pdf,image,word的格式,以txt格式的文件为例,每段文本需要使用空行隔开,程序会根据空行进行分段建立索引,示例数据如下(demo.txt):

兴证策略认为,最恐慌的时候已经过去,未来一个月市场迎来阶段性修复窗口。

从海外市场表现看,
对俄乌冲突的恐慌情绪已显著释放,
海外权益市场也从单边下跌转入双向波动。

长期,继续聚焦科技创新的五大方向。1)新能源(新能源汽车、光伏、风电、特高压等),2)新一代信息通信技术(人工智能、大数据、云计算、5G等),3)高端制造(智能数控机床、机器人、先进轨交装备等),4)生物医药(创新药、CXO、医疗器械和诊断设备等),5)军工(导弹设备、军工电子元器件、空间站、航天飞机等)。

B.linux下搭建语义检索系统

B.1 GPU版本

提示:Centos系统下坑比较多,需要使用paddle 2.4.2 Ubuntu推荐使用2.5.1 or develop。

1.1安装依赖

conda create -n paddlenlp_gpu  python=3.8
conda activate paddlenlp_gpu
python -m pip install --upgrade pip 

PaddleGPU、CUDA cudnn安装见:https://blog.csdn.net/sinat_39620217/article/details/131675175

当前版本:cuda11.2、paddle-develop版本(2.5.1存在bug解决方案见上述链接,可以使用2.5.2版本)

ImportError: libssl.so.1.1: cannot open shared object file: No such file or directory等问题

  • 版本查看:
pip install paddlepaddle-gpu==

(from versions: 1.8.5.post97, 1.8.5.post107, 2.0.0rc0, 2.0.0rc1, 2.0.0, 2.0.1, 2.0.2, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.2.0rc0, 2.2.0, 2.2.1, 2.2.2, 2.3.0rc0, 2.3.0, 2.3.1, 2.3.2, 2.4.0rc0, 2.4.0, 2.4.1, 2.4.2, 2.5.0rc0, 2.5.0rc1, 2.5.0, 2.5.1, 2.5.2)

pip install paddlenlp==

 (from versions: 2.0.0a0, 2.0.0a1, 2.0.0a2, 2.0.0a3, 2.0.0a4, 2.0.0a5, 2.0.0a6, 2.0.0a7, 2.0.0a8, 2.0.0a9, 2.0.0b0, 2.0.0b1, 2.0.0b2, 2.0.0b3, 2.0.0b4, 2.0.0rc0, 2.0.0rc1, 2.0.0rc2, 2.0.0rc3, 2.0.0rc4, 2.0.0rc5, 2.0.0rc6, 2.0.0rc7, 2.0.0rc8, 2.0.0rc9, 2.0.0rc10, 2.0.0rc11, 2.0.0rc12, 2.0.0rc13, 2.0.0rc14, 2.0.0rc15, 2.0.0rc16, 2.0.0rc17, 2.0.0rc18, 2.0.0rc19, 2.0.0rc20, 2.0.0rc21, 2.0.0rc22, 2.0.0rc23, 2.0.0rc24, 2.0.0rc25, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.0.5, 2.0.6, 2.0.7, 2.0.8, 2.1.0, 2.1.1, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.6, 2.3.0rc0, 2.3.0rc1, 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.3.5, 2.3.7, 2.4.0, 2.4.1.dev0, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9, 2.5.0, 2.5.1, 2.5.2, 2.6.0rc0, 2.6.0, 2.6.1)
python -m pip install paddlepaddle-gpu==0.0.0.post112 -f https://www.paddlepaddle.org.cn/whl/linux/gpu/develop.html

python -m pip install paddlepaddle-gpu==2.5.2 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html

pip install --upgrade paddlenlp -i https://mirrors.cloud.tencent.com/pypi/simple
#看报错修改指令pip install --use-pep517 --upgrade paddlenlp -i https://mirrors.cloud.tencent.com/pypi/simple --trusted-host mirrors.aliyun.com

pip install --upgrade paddle-pipelines -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install onnxruntime-gpu onnx onnxconverter-common -i https://mirrors.cloud.tencent.com/pypi/simple

1.2 测试效果

conda activate paddlenlp_2.6.0
cd /algorithm/temp_es/PaddleNLP-develop/pipelines
cd /algorithm/temp_es/elasticsearch-8.3.3
#到pipelines路径下

python examples/semantic-search/semantic_search_example.py --device gpu --search_engine faiss

python examples/semantic-search/semantic_search_example.py --device gpu --query_embedding_model rocketqa-zh-nano-query-encoder --params_path checkpoints/model_40/model_state.pdparams --embedding_dim 256

1.3 执行ES

创建新用户使用:创建一个新的用户,例如"elasticsearch":

sudo useradd elasticsearch1
#将Elasticsearch的安装目录的所有权更改为"elasticsearch":

sudo chown -R elasticsearch1:elasticsearch1 /algorithm/temp_es/elasticsearch-8.3.3
#切换到"elasticsearch"用户,并尝试再次运行Elasticsearch:

su elasticsearch1
./bin/elasticsearch


#常驻待确定
查看es启动了几个
ps aux | grep elasticsearch
ps -ef | grep elasticsearch

#Elasticsearch在启动过程中遇到了问题。具体来说,它无法获取节点锁,可能是由于数据路径不可写或者多个节点试图使用同一个数据路径。
#尝试清理数据路径/algorithm/temp_es/elasticsearch-8.3.3/data,删除其中的节点锁和其他临时文件
rm -rf /algorithm/temp_es/elasticsearch-8.3.3/data/*

1.4 构建ANN 索引库

# 以DuReader-Robust 数据集为例建立 ANN 索引库
python utils/offline_ann.py --index_name dureader_robust_neural_search --doc_dir data/dureader_dev --query_embedding_model rocketqa-zh-nano-query-encoder --passage_embedding_model rocketqa-zh-nano-para-encoder --embedding_dim 312 --delete_index

#查看数据,打印几条数据
curl http://localhost:9200/dureader_robust_neural_search/_search

#删除索引也可以使用下面的命令:
curl -XDELETE http://localhost:9200/dureader_robust_query_encoder

1.5 启动 RestAPI 模型服务

#指定语义检索系统的Yaml配置文件
export PIPELINE_YAML_PATH=rest_api/pipeline/semantic_search_custom.yaml
#使用端口号 8891 启动模型服务
python rest_api/application.py 8891

nltk_data加载,如果感觉很慢卡住了,可以见问题C.20

  • Linux 用户推荐采用 Shell 脚本来启动服务:
    sh examples/semantic-search/run_neural_search_server.sh
  • 启动后可以使用curl命令验证是否成功运行:
    curl -X POST -k http://localhost:8891/query -H 'Content-Type: application/json' -d '{"query": "衡量酒水的价格的因素有哪些?","params": {"Retriever": {"top_k": 5}, "Ranker":{"top_k": 5}}}'
    

1.6 启动web页面

pip install streamlit==1.11.1
pip install altair==4.2.2 -i https://mirrors.cloud.tencent.com/pypi/simple
#配置模型服务地址
export API_ENDPOINT=http://127.0.0.1:8891

#在指定端口 8502 启动 WebUI
python -m streamlit run ui/webapp_semantic_search.py --server.port 8502
#需要运维开阿里云网管以及端口授权
  • Linux 用户推荐采用 Shell 脚本来启动服务:
    sh examples/semantic-search/run_search_web.sh
    

到这里就可以打开浏览器访问 http://127.0.0.1:8502

关闭进程:

control+c

lsof -i:8502
kill -9 PID

B.2 CPU版本

2.1安装依赖库

安装同GPU选择paddle-2.5.1版本,提示:Centos系统下坑比较多需要使用paddle 2.4.2;Ubuntu推荐使用2.5.1 or develop。

conda activate paddlenlpcpu_2.6.0
cd /algorithm/temp_es/PaddleNLP-develop/pipelines
cd /algorithm/temp_es/elasticsearch-8.3.3

python -m pip install paddlepaddle==2.5.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install --upgrade paddlenlp -i https://mirrors.cloud.tencent.com/pypi/simple
#paddle2.4.2 对应NLP 2.5.2版本

pip install --upgrade paddle-pipelines -i https://pypi.tuna.tsinghua.edu.cn/simple

  • demo测试
python examples/semantic-search/semantic_search_example.py  --device cpu --embedding_dim 256

python examples/semantic-search/semantic_search_example.py --device cpu --query_embedding_model rocketqa-zh-nano-query-encoder --passage_embedding_model rocketqa-zh-nano-para-encoder --params_path checkpoints/model_40/model_state.pdparams --embedding_dim 312

2.3 执行ES

创建新用户使用:创建一个新的用户,例如"esuser":

sudo useradd esuser
#将Elasticsearch的安装目录的所有权更改为"esuser":

sudo chown -R esuser:esuser /algorithm/temp_es/elasticsearch-8.3.3
#切换到"esuser"用户,并尝试再次运行Elasticsearch:

su esuser  
./bin/elasticsearch

2.4 构建索引

python utils/offline_ann.py --index_name dureader_robust_neural_search --doc_dir data/dureader_dev --embedding_dim 256 --device cpu --delete_index

#查看数据,打印几条数据
curl http://localhost:9200/dureader_robust_neural_search/_search

#删除索引也可以使用下面的命令:
curl -XDELETE http://localhost:9200/dureader_robust_query_encoder

lsof -i:8502

kill -9 PID

python -m streamlit run ui/webapp_semantic_search.py --server.port 8502 --server.address 127.0.0.1

C.安装过程遇到相关问题解决—相关项目链接:

目前共记录21个在Windows和LInux下遇到的相关问题

点击链接进行跳转:

释放搜索潜力:基于ES(ElasticSearch)打造高效的语义搜索系统,让信息尽在掌握[1.安装部署篇—完整版],支持Linux/Windows部署安装

释放搜索潜力:基于ES(ElasticSearch)打造高效的语义搜索系统,让信息尽在掌握[2.项目讲解篇],支持Linux/Windows部署安装

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1141059.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于springboot零食商城管理系统

功能如图所示 摘要 这基于Spring Boot的零食商城管理系统提供了强大的购物车和订单管理功能。用户可以在系统中浏览零食产品,并将它们添加到购物车中。购物车可以保存用户的选购商品,允许随时查看已选择的商品和它们的数量。一旦用户满意,他们…

Geom2d_OffsetCurve解析

Geom2d_OffsetCurve (const Handle< Geom2d_Curve > &C, const Standard_Real Offset, const Standard_Boolean isNotCheckC0Standard_False) chatgpt解析&#xff1a;Geom2d_OffsetCurve 是 OpenCascade 中的函数&#xff0c;用于构造偏移曲线。下面是对该函数的参…

CDR和AI哪个软件更好用?

设计软件市场中&#xff0c;CorelDRAW和Adobe Illustrator&#xff08;简称AI&#xff09;无疑是两大重量级选手。它们各自拥有庞大的用户群和丰富的功能&#xff0c;但究竟哪一个更好用&#xff1f;本文将从多个角度出发&#xff0c;对这两款软件进行全面而深入的比较&#xf…

编曲宿主软件哪个更好用?

音乐编曲软件的出现使得音乐创作者能够克服时间和空间的限制&#xff0c;随时随地进行创作。随着信息时代的发展&#xff0c;使用编曲软件已成为音乐创作领域的主流。那么编曲软件哪个好用呢&#xff1f;我推荐这三款。 在业内&#xff0c;常用的音乐编曲软件包括Cubase、Logi…

RHCE8 资料整理(四)

RHCE8 资料整理 第四篇 存储管理第13章 硬盘管理13.1 对磁盘进行分区13.2 交换分区&#xff08;swap分区&#xff09; 第14章 文件系统14.1 了解文件系统14.2 了解硬链接14.3 创建文件系统14.4 挂载文件系统14.5 设置永久挂载14.6 查找文件14.7 find的用法 第15章 逻辑卷管理15…

QWidget|QFrame设置背景透明且可以带有边框颜色

QWidget|QFrame设置背景透明且可以带有边框颜色 《Qt》part 6 QSS Qt样式表——界面美化1【QT】QSS美化——基础知识Chapter1 QWidget|QFrame设置背景透明且可以带有边框颜色参考链接Chapter2 Qt 中设置窗体(QWidget)透明度的几种方法1. 设置窗体的背景色2. 使用函数 Chapter3 …

使用端口转发来访问集群中的应用

使用端口转发来访问集群中的应用 个人k8s集群信息&#xff1a; rootk8s-master:~# kubectl get nodes -o wide NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE KERNEL-VERSION CONTAINER-RUNTIM…

【源码】智慧导诊系统:告别排队等候,快速预约科室挂号!

去医院看病该挂什么科&#xff1f; 不知道该挂什么科我该问谁&#xff1f; 看到茫茫的排队就诊人群&#xff0c;心里绝望怎么办&#xff1f; 医院内部结构复杂&#xff0c;我要去的科室在哪里&#xff1f; 所有人都去咨询前台&#xff0c;前台压力大&#xff0c;患者也只 …

【ARM Trace32(劳特巴赫) 使用介绍 2 -- Trace32 cmm 脚本基本语法及常用命令】

文章目录 Trace32 CMM 概述1.1 Trace32 系统命令 SYStem1.1.1 Trace32 SYStem.CONFIG1.1.2 SYStem.MemAccess1.1.3 SYStem.Mode1.1.3.1 TRST-Resets the JTAG TAP controller and the CPU internal debug logic1.1.3.2 SRST- Resets the CPU core and peripherals 1.2 Trace32 …

原生mysql与mybatis执行update语句的差异

在做一个解除绑定的接口中&#xff0c;发现了这个一个问题&#xff1a; 连续对接口进行测试&#xff0c;发现一直fan返回解除成功&#xff0c;但是逻辑上应该是解除之后&#xff0c;在解除它后就应该回显已解除绑定才对 就一直找原因&#xff0c;sql中使用的是mybatis的…

常用的主流音乐编曲软件有哪些?

FL Studio是一款备受音乐人喜爱的超强编曲软件。最新的FL Studio版本将所有音频形式都视为采样&#xff0c;使得它在各个领域都有出色的表现。该软件操作简单&#xff0c;界面友好&#xff0c;非常适合新手全面学习和使用。此外&#xff0c;FL Studio完美支持Windows和Mac操作系…

内存-虚拟地址到物理内存地址转换

虚拟地址的位数 [rootnew ~]# cat /proc/cpuinfo | grep virtu | tail -1 address sizes : 46 bits physical, 48 bits virtual 高性能C之虚拟内存_哔哩哔哩_bilibili 第零层&#xff0c;每一项是4KB 512个4KB是2MB&#xff0c;第一层&#xff0c;每一项是1GB 512个2MB是…

✔ ★【备战实习(面经+项目+算法)】 10.27学习

✔ ★【备战实习&#xff08;面经项目算法&#xff09;】 坚持完成每天必做如何找到好工作1. 科学的学习方法&#xff08;专注&#xff01;效率&#xff01;记忆&#xff01;心流&#xff01;&#xff09;2. 每天认真完成必做项&#xff0c;踏实学习技术 认真完成每天必做&…

CVE-2022-32991靶场复现

靶场环境&#xff1a; 题目提示了该CMS的welcome.php中存在SQL注入攻击。 CVE官方给出的提示&#xff1a; welcome.php页面存在SQL注入&#xff0c;并且这个参数是eid 打开靶场环境&#xff1a; 页面是一个登陆注册的界面 用户注册&#xff1a; 1 010.com 123456 123456 点击Re…

多线程---认识线程

文章目录 什么是进程&#xff1f;如何管理进程&#xff1f;认识PCB了解进程调度的过程虚拟地址空间 什么是线程&#xff1f;进程 VS 线程Thread类的属性和方法Thread类的属性Thread类的方法构造方法普通方法 线程的状态 什么是进程&#xff1f; 进程&#xff0c;也叫做“任务”…

ZooKeeper中节点的操作命令(查看、创建、删除节点)

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…

LLVM学习笔记(56)

4.1.4. DAG合并与合法化 来自SelectionDAGBuilder的SelectionDAG输出还不能进行指令选择&#xff0c;必须通过额外的转换——显示在上图。在指令选择前应用的遍序列如下&#xff1a; 匹配一组节点&#xff0c;在有利时使用更简单的构造来替换它们&#xff0c;DAG合并遍优化Se…

信息学奥赛一本通2061:【例1.2】梯形面积

2061&#xff1a;【例1.2】梯形面积 时间限制: 1000 ms 内存限制: 65536 KB 提交数: 172550 通过数: 68183 【题目描述】 在梯形中阴影部分面积是150平方厘米&#xff0c;求梯形面积。 【输入】 (无&#xff09; 【输出】 输出梯形面积&#xff08;保留两位小数&a…

产品经理必看!提升效率的9款工具盘点,你都用过哪些?

产品经理是一款产品的灵魂人物&#xff0c;除了洞察用户需求和制定解决方案&#xff0c;每天还要腾出精力来协调各种资源&#xff0c;对接产品用户和内部多个部门&#xff0c;推动产品持续向前迭代。无论如何安排时间&#xff0c;大多数产品经理都没有足够的时间来处理他们的任…

本机spark 通idea连接Oracle的坑

1. 报错&#xff1a;Exception in thread "main" java.lang.NoSuchMethodError: scala.Product.$init$(Lscala/Product;)V 查询网上资料&#xff0c;是idea引入的scala运行环境版本与idea默认的scala版本不一样 也就是写的项目中的pom的spark版本与idea默认的版本不…