【自然语言处理】理解词向量、CBOW与Skip-Gram模型

news2024/11/17 5:35:54

文章目录

  • 一、词向量基础知识
    • 1.1 One-hot表示
    • 1.2 Distributed表示
  • 二、word2vec基础知识
    • 2.1 CBOW和Skip-gram
  • 三、基于Hierarchical Softmax的 CBOW 模型和 Skip-gram 模型
    • 3.1 CBOW 模型
    • 3.2 Skip-gram 模型
  • 参考资料

由于计算机不能直接对各种字符进行运算,为此需要将词的表示进行一些转换。因此,在自然语言处理中,通常需要对输入的语料进行一些预处理:
在这里插入图片描述
其中,如何对词汇进行表示是很关键的问题,糟糕的表示方法容易导致所谓的 “Garbage in, garbage out”。

一、词向量基础知识

对词汇的表示,常见的有One-hot representionDistributed Representation 两种形式。

1.1 One-hot表示

One-hot represention 将词汇用二进制向量表示,这个向量表示的词汇,仅仅在词汇表中的索引位置处为1,其他地方都为0。例子如下图所示:
在这里插入图片描述
这样的方式表示词汇虽然简单,但是也有如下缺点:

  • 单词的上下文丢失了。
  • 没有考虑频率信息。
  • 词汇量大的情况下,向量维度高且稀疏,占用内存。

1.2 Distributed表示

Distributed Representation 也可以理解为Word Embedding,具体形式为:
在这里插入图片描述
注意到,使用Word Embedding得到的向量维度远小于词汇表的个数。如果将上面的向量在空间中表示,可以得到:
在这里插入图片描述
上图告诉我们,通过词向量之间的距离可以度量他们之间的关系,意思相近的词在空间中的距离比较近。出现这种现象的原因是最后得到的词向量在训练过程中学习到了词的上下文。

那么,Distributed Representation 要如何得到?

  • 使用神经网络语言模型可以得到;
  • 使用word2vec。

二、word2vec基础知识

word2vec是google在2013年推出的一个NLP工具,它的特点是将所有的词向量化,这样词与词之间就可以定量的去度量他们之间的关系,挖掘词之间的联系。在正式讲解 word2vec 前,还需要对一些基本概念有所了解。

2.1 CBOW和Skip-gram

CBOW模型(Continuous Bag-of-Words Model)和Skip-gram模型(Continuous Skip-gram Model)。如下图所示:
在这里插入图片描述
由图可见,两个模型都包含三层:输入层、投影层和输出层。区别在于:

  • CBOW模型: 在已知上下文 w t − 2 , w t − 1 , w t + 1 w t + 2 w_{t-2}, w_{t-1}, w_{t+1} w_{t+2} wt2,wt1,wt+1wt+2的前提下预测当前词 w t w_t wt
  • Skip-gram模型: 在已知当前词 w t w_t wt的前提下预测上下文 w t − 2 , w t − 1 , w t + 1 w t + 2 w_{t-2}, w_{t-1}, w_{t+1} w_{t+2} wt2,wt1,wt+1wt+2

三、基于Hierarchical Softmax的 CBOW 模型和 Skip-gram 模型

3.1 CBOW 模型

CBOW 模型是 在已知上下文 w t − 2 , w t − 1 , w t + 1 w t + 2 w_{t-2}, w_{t-1}, w_{t+1} w_{t+2} wt2,wt1,wt+1wt+2的前提下预测当前词 w t w_t wt 。后面我们用 c o n t e x t ( w ) context(w) context(w)来表示词 w w w的上下文中的词,通常,我们取词 w w w前后 2 2 2c个单词来组成 c o n t e x t ( w ) context(w) context(w)。下图给出了CBOW模型的网络结构:
在这里插入图片描述

它包括三层:输入层、投影层、输出层。

  • 输入层:包含 c o n t e x t ( w ) context(w) context(w)中的 2 c 2c 2c个词向量 v ( c o n t e x t ( w ) 1 ) , v ( c o n t e x t ( w ) 2 ) , … , v ( c o n t e x t ( w ) 2 c ) ∈ R m \mathbf v(context(w)_1),\mathbf v(context(w)_2),\ldots,\mathbf v(context(w)_{2c}) \in \mathbf R^m v(context(w)1),v(context(w)2),,v(context(w)2c)Rm
    ,每个词向量的长度是 m m m
  • 投影层:将输入层的 2 c 2c 2c个词向量累加求和,即 x w = ∑ i = 1 2 c v ( c o n t e x t ( w ) i ) \mathbf x_w = \sum_{i=1}^{2c}\mathbf v(context(w)_i) xw=i=12cv(context(w)i)
  • 输出层:输出层是用哈夫曼算法以各词在语料中出现的次数作为权值生成的一颗二叉树,其叶子结点是语料库中的所有词,叶子个数 N = ∣ D ∣ N=|D| N=D,分别对应词典D中的词。

神经网络语言模型(NNLM)中大部分计算集中在隐藏层和输出层之间的矩阵向量运算,以及输出层上的softmax归一化运算,CBOW模型对此进行了改进。与传统的神经网络语言模型相比:

  • NNLM是简单的将输入的向量进行拼接,而CBOW模型将上下文的词累加求和作为输入;
  • NNLM是线性结构,而CBOW是树形结构
  • NNLM具有隐藏层,而CBOW没有隐藏层

3.2 Skip-gram 模型

Skip-gram 模型的结构也是三层,下面以样本 ( w , c o n t e x t ( w ) (w,context(w) (w,context(w)为例说明。如下图所示:
在这里插入图片描述
它也包括三层:输入层、投影层、输出层。

  • 输入层:只包含当前样本中心词 w w w词向量 v ( w ) ∈ R m \mathbf v(w) \in \mathbf R^m v(w)Rm,每个词向量的长度是 m m m
  • 投影层:恒等投影,即和输入层一样,保留是为了与CBOW对比。
  • 输出层:与CBOW类似

对于Skip-gram模型,已知的是当前词 w w w,需要对其上下文 c o n t e x t ( w ) context(w) context(w)中的词进行预测,所以:
在这里插入图片描述
类似于CBOW,所以:
在这里插入图片描述
其中:
在这里插入图片描述

所以我们的优化目标是:
在这里插入图片描述
采用随机梯度上升法将这个函数最大化。

参考资料

  • 【AI理论学习】理解词向量、CBOW与Skip-Gram模型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1130006.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java8实战-总结44

Java8实战-总结44 CompletableFuture:组合式异步编程Future 接口Future 接口的局限性使用 CompletableFuture 构建异步应用 CompletableFuture:组合式异步编程 最近这些年,两种趋势不断地推动我们反思我们设计软件的方式。第一种趋势和应用运…

让 CHAT 充分发挥优势

今天,小编带大家看下CHAT是如何写作的? 作为家长的你,是不是有为孩子的作业而烦恼?是不是也担心孩子的压力太大?产生逆反心理,今天我们将看下如何利用CHAT来帮助孩子提高学习的质量,帮家长减轻心…

基于hugging face的autogptq量化实践

1.量化并保存到本地的 #导入库: from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig model_id "facebook/opt-125m"quantization_config GPTQConfig(bits4,group_size128,dataset"c4",desc_actFalse, )tokenizer A…

Git的远程仓库

Git的远程仓库 添加远程仓库从远程库克隆 添加远程仓库 你在本地创建了一个Git仓库后,又想在GitHub创建一个Git仓库,并且让这两个仓库进行远程同步,这样,GitHub上的仓库既可以作为备份,又可以让其他人通过该仓库来协作…

让数据“动”起来:Python动态图表制作详解

在读技术博客的过程中,我们会发现那些能够把知识、成果讲透的博主很多都会做动态图表。他们的图是怎么做的?难度大吗?这篇文章就介绍了 Python 中一种简单的动态图表制作方法。 数据暴增的年代,数据科学家、分析师在被要求对数据有…

DAY33 1005. K次取反后最大化的数组和 + 134. 加油站 + 135. 分发糖果

1005. K次取反后最大化的数组和 题目要求:给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次。(我们可以多次选择同一个索引 i。) …

风力发电功率预测(CEEMDAN-LSTM-CNN-CBAM模型,Python代码)

1.前言 1.1.运行效果:风力发电功率预测(CEEMDAN-LSTM-CNN-CBAM模型,Python代码)_哔哩哔哩_bilibili 1.2.环境库: 如果库版本不一样, 一般也可以运行,这里展示我运行时候的库版本,是…

hadoop伪分布式安装部署

首先jdk安装完毕 jdk安装文档参考: Linux 环境下安装JDK1.8并配置环境变量_linux安装jdk1.8并配置环境变量_Xi-Yuan的博客-CSDN博客 准备好hadoop的安装包 我的下载地址如下: We Transfer Gratuit. Envoi scuris de gros fichiers. 将hadoop包上传到随…

Leetcode—2678.老人的数目【简单】

2023每日刷题&#xff08;八&#xff09; Leetcode—2678.老人的数目 int countSeniors(char ** details, int detailsSize){ int ans 0; int i; int tens 0; int ones 0; for(i 0; i < detailsSize; i) { tens ((details i) 11) - ‘0’; ones ((details i) 12)…

二十三、设计模式之组合模式![

目录 二十三、设计模式之组合模式能帮我们干什么&#xff1f;主要解决什么问题&#xff1f;优缺点优点缺点&#xff1a; 使用的场景理解实现角色组合模式 总结 魔战已经完结。成功登顶。占领敌军最高峰。 二十三、设计模式之组合模式 “组合模式”也被称为“部分整体模式”该…

报错:SSL routines:ssl3_get_record:wrong version number

一、问题描述 前后端联调的时候&#xff0c;连接后端本地服务器&#xff0c;接口一直pending调不通&#xff0c;控制台还报以下错误&#xff1a; 立马随手搜索了一下解决方案&#xff0c;但是emmm&#xff0c;不符合前端的实际情况&#xff1a; 二、解决方法&#xff1a; 实际…

WIN11+OPENCV4.8 编译及下载失败处理方法

1. 基础准备 1. 下载Opencv和Contrib库 Opencv&#xff1a;Releases opencv/opencv GitHub Contrib&#xff1a;Tags opencv/opencv_contrib GitHub 2. 安装Visual Studio 或 MinGW64 MinGW&#xff1a;Tags opencv/opencv_contrib GitHub 这里安装1.12.0 MinGW 。 以…

uniapp 自定义导航栏

自定义导航栏 修改 pages.json 在 pages.json 中将 navigateionStyle 设为 custom 新建 systemInfo.js systemInfo.js 用来获取当前设备的机型系统信息&#xff0c;放在 common 目录下 /*** 此 js 文件管理关于当前设备的机型系统信息*/ const systemInfo function() {/***…

Python深度学习实战-基于Sequential方法搭建BP神经网络实现分类任务(附源码和实现效果)

实现功能 第一步&#xff1a;导入模块&#xff1a;import tensorflow as tf 第二步&#xff1a;制定输入网络的训练集和测试集 第三步&#xff1a;搭建网络结构&#xff1a;tf.keras.models.Sequential() 第四步&#xff1a;配置训练方法&#xff1a;model.compile()&#x…

Lec09 Interrupts | 中断

中断与系统调用区别 asynchronous。当硬件生成中断时&#xff0c;Interrupt handler与当前运行的进程在CPU上没有任何关联。但如果是系统调用的话&#xff0c;系统调用发生在运行进程的context下。concurrency。我们这节课会稍微介绍并发&#xff0c;在下一节课&#xff0c;我…

水电站与数据可视化:洞察未来能源趋势的窗口

在信息时代的浪潮中&#xff0c;数据可视化正成为推动能源领域发展的重要工具。今天&#xff0c;我们将带您一起探索水电站与数据可视化的结合&#xff0c;如何成为洞察未来能源趋势的窗口。水电站作为传统能源领域的重要组成部分&#xff0c;它的运行与管理涉及大量的数据。然…

开源Linux社区Armbian开发指南

1. 什么是armbian Armbian是一个基于Debian或Ubuntu的开源操作系统&#xff0c;专门针对嵌入式ARM平台进行优化和定制。Armbian可以运行在多种不同的嵌入式设备上&#xff0c;例如树莓派、ArmSoM、香蕉派等等。Armbian针对不同的嵌入式平台&#xff0c;提供了相应的硬件支持&a…

计算机网络第3章-运输层(2)

可靠数据传输原理 可靠数据传输依靠数据在一条可靠信道上进行传输。 TCP也正是依靠可靠信道进行传数据&#xff0c;从而数据不会被丢失。 而实现这种可靠数据传输服务是可靠数据传输协议的责任 构造可靠数据传输协议 1.经完全可靠信道的可靠数据传输&#xff1a;rdt1.0 在…

SpringSecurity分布式安全框架

Spring Security是一个基于Spring框架的安全框架&#xff0c;它提供了全面的安全解决方案&#xff0c;包括用户认证和用户授权等Web应用安全性问题。Spring Security可以轻松扩展以满足自定义需求&#xff0c;它的真正强大之处在于它可以轻松扩展以满足自定义要求。 对于分布式…

php使用阿里云文本内容检测openapi-sdk-php

文章目录 前言一、下载sdk1.1 windows系统安装 composer1.2 使用composer安装阿里云sdk 二、新加php文件调用审核接口2.1、创建一个php文件 前言 最近有个非常简单的项目&#xff0c;需要对用户输入的文本进行内容审核&#xff0c;直接使用阿里云接口机审一下就OK了 阿里云文…