DAY33 1005. K次取反后最大化的数组和 + 134. 加油站 + 135. 分发糖果

news2024/11/17 4:42:31

1005. K次取反后最大化的数组和

题目要求:给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次。(我们可以多次选择同一个索引 i。)

以这种方式修改数组后,返回数组可能的最大和。

示例 1:

  • 输入:A = [4,2,3], K = 1
  • 输出:5
  • 解释:选择索引 (1,) ,然后 A 变为 [4,-2,3]。

示例 2:

  • 输入:A = [3,-1,0,2], K = 3
  • 输出:6
  • 解释:选择索引 (1, 2, 2) ,然后 A 变为 [3,1,0,2]。

示例 3:

  • 输入:A = [2,-3,-1,5,-4], K = 2
  • 输出:13
  • 解释:选择索引 (1, 4) ,然后 A 变为 [2,3,-1,5,4]。

提示:

  • 1 <= A.length <= 10000
  • 1 <= K <= 10000
  • -100 <= A[i] <= 100

思路

贪心的思路,局部最优:让绝对值大的负数变为正数,当前数值达到最大,整体最优:整个数组和达到最大。

那么如果将负数都转变为正数了,K依然大于0,此时的问题是一个有序正整数序列,如何转变K次正负,让 数组和 达到最大。

那么又是一个贪心:局部最优:只找数值最小的正整数进行反转,当前数值和可以达到最大(例如正整数数组{5, 3, 1},反转1 得到-1 比 反转5得到的-5 大多了),全局最优:整个 数组和 达到最大。

那么本题的解题步骤为:

  • 第一步:将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小
  • 第二步:从前向后遍历,遇到负数将其变为正数,同时K--
  • 第三步:如果K还大于0,那么反复转变数值最小的元素,将K用完
  • 第四步:求和
class Solution {
public:
    static bool cmp(int a, int b) {
        return abs(a) > abs(b);
    }
    int largestSumAfterKNegations(vector<int>& nums, int k) {
        sort(nums.begin(), nums.end(), cmp);
        for (int i = 0; i < nums.size(); ++i) {
            if (nums[i] < 0 && k > 0) {
                nums[i] *= -1;
                k--;
            }
        }
        if (k % 2 == 1) nums[nums.size() - 1] *= -1;
        int res = 0;
        for (int a : nums) res += a;
        return res;
    }
};

134. 加油站

题目要求:在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。

你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。

如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。

说明:

  • 如果题目有解,该答案即为唯一答案。
  • 输入数组均为非空数组,且长度相同。
  • 输入数组中的元素均为非负数。

示例 1: 输入:

  • gas = [1,2,3,4,5]
  • cost = [3,4,5,1,2]

输出: 3 解释:

  • 从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
  • 开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
  • 开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
  • 开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
  • 开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
  • 开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
  • 因此,3 可为起始索引。

示例 2: 输入:

  • gas = [2,3,4]

  • cost = [3,4,3]

  • 输出: -1

  • 解释: 你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油。开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油。开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油。你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。因此,无论怎样,你都不可能绕环路行驶一周。

思路

贪心算法(方法二)

可以换一个思路,首先如果总油量减去总消耗大于等于零那么一定可以跑完一圈,说明 各个站点的加油站 剩油量rest[i]相加一定是大于等于零的。

每个加油站的剩余量rest[i]为gas[i] - cost[i]。

i从0开始累加rest[i],和记为curSum,一旦curSum小于零,说明[0, i]区间都不能作为起始位置,因为这个区间选择任何一个位置作为起点,到i这里都会断油,那么起始位置从i+1算起,再从0计算curSum。

那么局部最优:当前累加rest[i]的和curSum一旦小于0,起始位置至少要是i+1,因为从i之前开始一定不行。全局最优:找到可以跑一圈的起始位置

class Solution {
public:
    int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
        int curSum = 0;
        int totalSum = 0;
        int start = 0;
        for (int i = 0; i < gas.size(); ++i) {
            curSum += gas[i] - cost[i];
            totalSum += gas[i] - cost[i];
            if (curSum < 0) {
                start = i + 1;
                curSum = 0;
            }
        }
        if (totalSum < 0) return -1;
        return start;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

135. 分发糖果

题目要求:老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。

你需要按照以下要求,帮助老师给这些孩子分发糖果:

  • 每个孩子至少分配到 1 个糖果。
  • 相邻的孩子中,评分高的孩子必须获得更多的糖果。

那么这样下来,老师至少需要准备多少颗糖果呢?

示例 1:

  • 输入: [1,0,2]
  • 输出: 5
  • 解释: 你可以分别给这三个孩子分发 2、1、2 颗糖果。

示例 2:

  • 输入: [1,2,2]
  • 输出: 4
  • 解释: 你可以分别给这三个孩子分发 1、2、1 颗糖果。第三个孩子只得到 1 颗糖果,这已满足上述两个条件。

思路

这道题目一定是要确定一边之后,再确定另一边,例如比较每一个孩子的左边,然后再比较右边,如果两边一起考虑一定会顾此失彼

每一个孩子我都先给一个糖果,然后都先比左边再比右边。小了的不管,大了的加一。

先确定右边评分大于左边的情况(也就是从前向后遍历)

此时局部最优:只要右边评分比左边大,右边的孩子就多一个糖果,全局最优:相邻的孩子中,评分高的右孩子获得比左边孩子更多的糖果

局部最优可以推出全局最优。

如果ratings[i] > ratings[i - 1] 那么[i]的糖 一定要比[i - 1]的糖多一个,所以贪心:candyVec[i] = candyVec[i - 1] + 1

再确定左孩子大于右孩子的情况(从后向前遍历)

遍历顺序这里有同学可能会有疑问,为什么不能从前向后遍历呢?

因为 rating[5]与rating[4]的比较 要利用上 rating[5]与rating[6]的比较结果,所以 要从后向前遍历。

如果从前向后遍历,rating[5]与rating[4]的比较 就不能用上 rating[5]与rating[6]的比较结果了 。如图:

所以确定左孩子大于右孩子的情况一定要从后向前遍历!

如果 ratings[i] > ratings[i + 1],此时candyVec[i](第i个小孩的糖果数量)就有两个选择了,一个是candyVec[i + 1] + 1(从右边这个加1得到的糖果数量),一个是candyVec[i](之前比较右孩子大于左孩子得到的糖果数量)。

那么又要贪心了,局部最优:取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,保证第i个小孩的糖果数量既大于左边的也大于右边的。全局最优:相邻的孩子中,评分高的孩子获得更多的糖果。

局部最优可以推出全局最优。

所以就取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,candyVec[i]只有取最大的才能既保持对左边candyVec[i - 1]的糖果多,也比右边candyVec[i + 1]的糖果多

class Solution {
public:
    int candy(vector<int>& ratings) {
        vector<int> candyVec(ratings.size(), 1);
        // 从前向后
        for (int i = 1; i < ratings.size(); ++i) {
            // 右大于左
            if (ratings[i] > ratings[i-1]) candyVec[i] = candyVec[i-1] + 1;
        }
        // 从后向前
        for (int i = ratings.size() - 2; i >= 0; --i) {
            // 左大于右
            if (ratings[i] > ratings[i+1]) candyVec[i] = max(candyVec[i], candyVec[i+1] + 1);
        }
        int res = 0;
        for (int i = 0; i < ratings.size(); ++i) res += candyVec[i];
        return res;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1129997.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

风力发电功率预测(CEEMDAN-LSTM-CNN-CBAM模型,Python代码)

1.前言 1.1.运行效果&#xff1a;风力发电功率预测&#xff08;CEEMDAN-LSTM-CNN-CBAM模型&#xff0c;Python代码&#xff09;_哔哩哔哩_bilibili 1.2.环境库&#xff1a; 如果库版本不一样&#xff0c; 一般也可以运行&#xff0c;这里展示我运行时候的库版本&#xff0c;是…

hadoop伪分布式安装部署

首先jdk安装完毕 jdk安装文档参考&#xff1a; Linux 环境下安装JDK1.8并配置环境变量_linux安装jdk1.8并配置环境变量_Xi-Yuan的博客-CSDN博客 准备好hadoop的安装包 我的下载地址如下&#xff1a; We Transfer Gratuit. Envoi scuris de gros fichiers. 将hadoop包上传到随…

Leetcode—2678.老人的数目【简单】

2023每日刷题&#xff08;八&#xff09; Leetcode—2678.老人的数目 int countSeniors(char ** details, int detailsSize){ int ans 0; int i; int tens 0; int ones 0; for(i 0; i < detailsSize; i) { tens ((details i) 11) - ‘0’; ones ((details i) 12)…

二十三、设计模式之组合模式![

目录 二十三、设计模式之组合模式能帮我们干什么&#xff1f;主要解决什么问题&#xff1f;优缺点优点缺点&#xff1a; 使用的场景理解实现角色组合模式 总结 魔战已经完结。成功登顶。占领敌军最高峰。 二十三、设计模式之组合模式 “组合模式”也被称为“部分整体模式”该…

报错:SSL routines:ssl3_get_record:wrong version number

一、问题描述 前后端联调的时候&#xff0c;连接后端本地服务器&#xff0c;接口一直pending调不通&#xff0c;控制台还报以下错误&#xff1a; 立马随手搜索了一下解决方案&#xff0c;但是emmm&#xff0c;不符合前端的实际情况&#xff1a; 二、解决方法&#xff1a; 实际…

WIN11+OPENCV4.8 编译及下载失败处理方法

1. 基础准备 1. 下载Opencv和Contrib库 Opencv&#xff1a;Releases opencv/opencv GitHub Contrib&#xff1a;Tags opencv/opencv_contrib GitHub 2. 安装Visual Studio 或 MinGW64 MinGW&#xff1a;Tags opencv/opencv_contrib GitHub 这里安装1.12.0 MinGW 。 以…

uniapp 自定义导航栏

自定义导航栏 修改 pages.json 在 pages.json 中将 navigateionStyle 设为 custom 新建 systemInfo.js systemInfo.js 用来获取当前设备的机型系统信息&#xff0c;放在 common 目录下 /*** 此 js 文件管理关于当前设备的机型系统信息*/ const systemInfo function() {/***…

Python深度学习实战-基于Sequential方法搭建BP神经网络实现分类任务(附源码和实现效果)

实现功能 第一步&#xff1a;导入模块&#xff1a;import tensorflow as tf 第二步&#xff1a;制定输入网络的训练集和测试集 第三步&#xff1a;搭建网络结构&#xff1a;tf.keras.models.Sequential() 第四步&#xff1a;配置训练方法&#xff1a;model.compile()&#x…

Lec09 Interrupts | 中断

中断与系统调用区别 asynchronous。当硬件生成中断时&#xff0c;Interrupt handler与当前运行的进程在CPU上没有任何关联。但如果是系统调用的话&#xff0c;系统调用发生在运行进程的context下。concurrency。我们这节课会稍微介绍并发&#xff0c;在下一节课&#xff0c;我…

水电站与数据可视化:洞察未来能源趋势的窗口

在信息时代的浪潮中&#xff0c;数据可视化正成为推动能源领域发展的重要工具。今天&#xff0c;我们将带您一起探索水电站与数据可视化的结合&#xff0c;如何成为洞察未来能源趋势的窗口。水电站作为传统能源领域的重要组成部分&#xff0c;它的运行与管理涉及大量的数据。然…

开源Linux社区Armbian开发指南

1. 什么是armbian Armbian是一个基于Debian或Ubuntu的开源操作系统&#xff0c;专门针对嵌入式ARM平台进行优化和定制。Armbian可以运行在多种不同的嵌入式设备上&#xff0c;例如树莓派、ArmSoM、香蕉派等等。Armbian针对不同的嵌入式平台&#xff0c;提供了相应的硬件支持&a…

计算机网络第3章-运输层(2)

可靠数据传输原理 可靠数据传输依靠数据在一条可靠信道上进行传输。 TCP也正是依靠可靠信道进行传数据&#xff0c;从而数据不会被丢失。 而实现这种可靠数据传输服务是可靠数据传输协议的责任 构造可靠数据传输协议 1.经完全可靠信道的可靠数据传输&#xff1a;rdt1.0 在…

SpringSecurity分布式安全框架

Spring Security是一个基于Spring框架的安全框架&#xff0c;它提供了全面的安全解决方案&#xff0c;包括用户认证和用户授权等Web应用安全性问题。Spring Security可以轻松扩展以满足自定义需求&#xff0c;它的真正强大之处在于它可以轻松扩展以满足自定义要求。 对于分布式…

php使用阿里云文本内容检测openapi-sdk-php

文章目录 前言一、下载sdk1.1 windows系统安装 composer1.2 使用composer安装阿里云sdk 二、新加php文件调用审核接口2.1、创建一个php文件 前言 最近有个非常简单的项目&#xff0c;需要对用户输入的文本进行内容审核&#xff0c;直接使用阿里云接口机审一下就OK了 阿里云文…

苍穹外卖-01

苍穹外卖-01 课程内容 软件开发整体介绍苍穹外卖项目介绍开发环境搭建导入接口文档Swagger 项目整体效果展示&#xff1a; ​ 管理端-外卖商家使用 ​ 用户端-点餐用户使用 当我们完成该项目的学习&#xff0c;可以培养以下能力&#xff1a; 1. 软件开发整体介绍 作为一名…

FSL 6.07安装

本来已经不想再用FSL&#xff0c;貌似还是避不开&#xff0c;过了两年多&#xff0c;有安装了FSL&#xff0c;安装教程满大街&#xff0c;这里只是说一下变化&#xff0c;貌似&#xff0c;最新得6.0.7安装文件不限制python2了。 然后安装过程会先安装一个miniconda环境&#xf…

人工智能基础_机器学习001_线性回归_多元线性回归_最优解_基本概念_有监督机器学习_jupyter notebook---人工智能工作笔记0040

线性和回归,就是自然规律,比如人类是身高趋于某个值的概率最大,回归就是通过数学方法找到事物的规律. 机器学习作用: 该专业实际应用于机器视觉、指纹识别、人脸识别、视网膜识别、虹膜识别、掌纹识别、专家系统、自动规划、智能搜索、定理证明、博弈、自动程序设计、智能控制…

牛客网刷题-(3)

&#x1f308;write in front&#x1f308; &#x1f9f8;大家好&#xff0c;我是Aileen&#x1f9f8;.希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由Aileen_0v0&#x1f9f8; 原创 CSDN首发&#x1f412; 如…

【JavaEE】网络原理---TCP协议的易懂图文详解(确认应答、超时重传、连接管理、滑动窗口、流量控制)

一、TCP协议 TCP&#xff0c;即Transmission Control Protocol&#xff0c;传输控制协议。人如其名&#xff0c;要对数据的传输进行一个详细的控制。 1.1 TCP协议格式 &#xff08;为了方便排版这样化的&#xff0c;我们从上到下依次理解&#xff09; 二、TCP原理 2.1 确…

Luckyexcel 加载 springboot 后台返回的 excel 文件并显示

&#x1f451; 博主简介&#xff1a;知名开发工程师 &#x1f463; 出没地点&#xff1a;北京 &#x1f48a; 2023年目标&#xff1a;成为一个大佬 ——————————————————————————————————————————— 版权声明&#xff1a;本文为原创文…