基于正余弦算法的无人机航迹规划-附代码

news2024/11/18 4:39:37

基于正余弦算法的无人机航迹规划

文章目录

  • 基于正余弦算法的无人机航迹规划
    • 1.正余弦搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用正余弦算法来优化无人机航迹规划。

1.正余弦搜索算法

正余弦算法原理请参考:https://blog.csdn.net/u011835903/article/details/107762654

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得正余弦搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用正余弦算法对航迹评价函数式(7)进行优化。优化结果如下:
在这里插入图片描述
在这里插入图片描述

从结果来看,正余弦算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1129563.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

31一维信号滤波(限幅滤波、中值滤波、均值滤波、递推平均滤波),MATLAB程序已调通,可直接运行。

一维信号滤波(限幅滤波、中值滤波、均值滤波、递推平均滤波),MATLAB程序已调通,可直接运行。 31matlab、中值滤波、信号处理 (xiaohongshu.com)

structs2 重构成SpringBoot架构

# 目录 structs2 重构成SpringBoot架构 1.1 structs2架构: 1.2 springboot 架构 1.3 演化要点: 1.基于前端的展示层不需要修改 2.HttpServlet 将会有SpringBoot annotation 来处理 3.构建前置的Structs url 转发器,适配 4.ActionSupport将由…

9篇论文速览股票预测高分经典方案

作为一直以来的烫门,股票预测因其非线性、高度波动性和复杂性等原因,成为了金融量化领域的一大难题。以往的解决方案主要围绕机器学习展开,如今,基于深度学习的股票预测方法有了许多新的突破。 为了帮助大家更深入地了解股票预测…

防止消息丢失与消息重复——Kafka可靠性分析及优化实践

系列文章目录 上手第一关,手把手教你安装kafka与可视化工具kafka-eagle Kafka是什么,以及如何使用SpringBoot对接Kafka 架构必备能力——kafka的选型对比及应用场景 Kafka存取原理与实现分析,打破面试难关 防止消息丢失与消息重复——Kafka可…

ToDesk等远程软件连接主机无法更改分辨率 - 解决方案

问题 使用ToDesk等远程软件连接自己的Linux或Windows主机时,若主机已连接显示器,则可通过系统设置更改显示分辨率。但如果主机没有连接显示器或显示器的电源关闭,则无法正常调整分辨率。下文介绍解决方案。 解决方案 方案1:连接…

多跳推理真的可解释吗?10.24

多跳推理真的可解释吗 摘要1 引言2 相关工作2.1 多跳推理2.2 基于规则的推理2.3 可解释性评估 3 基础知识4 基准测试4.1 数据集构建4.2 评估框架4.3 近似可解释性评分4.4 Benchmark with Manual Annotation4.5 使用挖掘规则的基准 实验 摘要 近年来,多跳推理在获取…

BUUCTF wireshark 1

BUUCTF:https://buuoj.cn/challenges 题目描述: 黑客通过wireshark抓到管理员登陆网站的一段流量包(管理员的密码即是答案) 密文: 下载附件,解压后得到一个.pcap文件。 解题思路: 1、双击文件,在wires…

测试用例的设计方法(全):边界值分析方法

一.方法简介 1.定义:边界值分析法就是对输入或输出的边界值进行测试的一种黑盒测试方法。通常边界值分析法是作为对等价类划分法的补充,这种情况下,其测试用例来自等价类的边界。 2.与等价划分的区别 1)边界值分析不是从某等价类中随便挑…

Mysql主从集群同步延迟问题怎么解决

主从复制 复制过程分为几个步骤: 主库的更新事件(update、insert、delete)被写到binlog 从库发起连接,连接到主库。 此时主库创建一个 binlog dump thread,把 binlog 的内容发送到从库。 从库启动之后,创建一个 I/O 线程&#xff…

用VLOOKUP快速合并两个表格

一、前言 上周五微信收到运营提过来的需求,第一句话:帮我提取一下1号门店的库存数据,马上登录系统下载一份库存数据给到他然后专心读代码,过一会微信第二句话:帮我提取一下1号门店商品半年/一年的销量数据&#xff0c…

常用linux命令 linux_cmd_sheet

查看文件大小 ls -al 显示每个文件的kb大小 查看系统日志 dmesg -T | tail 在 top 命令中,RES 和 VIRT(或者 total-vm)是用来表示进程内存使用的两个不同指标,它们之间有以下区别: RES(Resident Set Size…

使用ruoyi框架遇到的问题修改记录

使用ruoyi框架遇到的问题修改记录 文章目录 使用ruoyi框架遇到的问题修改记录上传后文件名改变上传时设置单多文件及其他选项附件显示文件名,点击下载附件直接显示图片表格固定列查询数据库作为下拉选项值字典使用加入json递归注解,防止无限递归内存溢出…

Zabbix安装与部署

前言 Zabbix是一个开源的网络监控和系统监控解决方案,用于监控服务器、网络设备、应用程序和服务。它基于客户端-服务器体系结构,使用多种监控选项来监控不同类型的设备和应用程序。Zabbix支持数据收集、处理和存储,以及报警和可视化等功能。…

VESTA软件下载

1.进入官网添加链接描述 2.下滑找到对应版本 3.解压 4.找到.exe文件(不用安装)

JSX 列表渲染

学习目标: 能够在 JSX 中实现列表渲染 页面的构建离不开重复的列表结构,比如歌曲列表,商品列表等等,Vue 中用的式 v-for 做到这一点,react 中又该如何实现呢? 实现: 使用数组的 map 方法 案例: …

【数据科学赛】2023年亚太眼科学会大数据竞赛 #$15000 #阿里天池 #分类

CompHub[1] 最新的比赛会第一时间在群里通知,欢迎加群交流比赛经验!(公众号回复“加群”即可) 根据比赛主页[2](文末阅读原文),使用AI辅助生成 大赛概况 2023年亚太眼科学会大数据竞赛由亚太眼科学会(Asia…

Xilinx FFT使用说明和测试

Xilinx FFT使用说明和测试 1 IP接口信号2 IP基本配置3 IP功能测试 本文主要介绍Xilinx FFT IP的使用方法 1 IP接口信号 FFT用于计算N点的DFT或者IDFT,N为2m,其中m2~16。IP的输入输出接口如下表所示,主要包括时钟、复位信号,输入的…

ApowerREC v1.2.7.10(多功能屏幕录屏工具)

ApowerREC是一款功能强大的屏幕录制软件,主要特点如下: 支持音画同步录制:可以录制电脑桌面操作、在线会议、娱乐视频等所有活动。提供多种录制模式:包括全屏录制、区域录制、画中画等多种录制视频模式,同时也可以支持…

05、Python -- 爬取ts文件格式视频思路

目录 第一步:爬取一段5秒视频找url代码结果第二步:下载整个视频的所有片段代码:结果:第三步:合成视频安装模块代码:结果简洁代码代码:结果:最终代码简洁前代码简洁后代码思路: 1、爬取视频,但是每次只能爬取一段5秒的视频。 2、一个视频有很多秒,所以需要爬取很多片…

11 结构型模式- 代理模式

结构性模式一共包括七种: 代理模式、桥接模式、装饰者模式、适配器模式、门面(外观)模式、组合模式、和享元模式。 1 代理模式介绍 软件开发中的代理: 代理模式中引入了一个新的代理对象,代理对象在客户端对象和目标对象之间起到了中介的作用,它去掉客…