【机器学习合集】激活函数合集 ->(个人学习记录笔记)

news2025/2/27 5:24:52

文章目录

      • 1. S激活函数(sigmoid&Tanh)
      • 2. ReLU激活函数
      • 3. ReLU激活函数的改进
      • 4. 近似ReLU激活函数
      • 5. Maxout激活函数
      • 6. 自动搜索的激活函数Swish

1. S激活函数(sigmoid&Tanh)

  • Sigmoid函数在机器学习中经常用作激活函数,但它在某些情况下容易出现梯度消失问题,这是因为它的特性导致了梯度在饱和区域非常接近于零。

  • Sigmoid函数的数学表达式如下: S(x) = 1 / (1 + e^(-x))

  • 当输入x接近正无穷大(x → +∞)时,Sigmoid函数的输出趋近于1,而当输入x接近负无穷大(x → -∞)时,输出趋近于0。这意味着Sigmoid函数具有饱和性质,即在这些极端值附近,它的梯度接近于零。这就是梯度消失问题的根本原因。
  • 当你使用Sigmoid激活函数时,如果输入数据的绝对值非常大,梯度接近于零,这会导致反向传播算法中的梯度变得非常小,从而权重更新几乎不会发生,导致训练变得非常缓慢或根本无法进行有效的学习。这尤其在深度神经网络中更加明显,因为梯度会以指数方式递减,这就是为什么Sigmoid函数在深度神经网络中容易出现梯度消失问题。
  • 为了克服这个问题,人们开始使用其他激活函数,如ReLU(Rectified Linear Unit)和其变种,它们不具有Sigmoid函数的饱和性质,因此在训练深度神经网络时更加稳定。ReLU激活函数的导数在正区域始终为1,因此梯度不会在正区域消失。这有助于更有效地进行梯度传播和权重更新,减少了梯度消失问题。


在这里插入图片描述

在这里插入图片描述

  • Tanh(双曲正切)函数在某些情况下也可能出现梯度消失问题,尽管它相对于Sigmoid函数有一些改进,但仍然具有饱和性质,导致梯度在饱和区域接近于零。
  • Tanh函数的数学表达式如下: Tanh(x) = (e^x - e^(-x)) / (e^x + e^(-x))
  • Tanh函数的输出范围在-1到1之间,当输入x接近正无穷大时,它的输出趋近于1,当输入x接近负无穷大时,它的输出趋近于-1。这就意味着Tanh函数在极端值附近也具有饱和性质,梯度接近于零。
  • 梯度消失问题发生的原因在于反向传播算法中的链式法则,其中导数相乘。当使用Tanh函数时,如果在网络的前向传播过程中输出值位于饱和区域,梯度将变得非常小,反向传播中的梯度也会随之减小。这会导致权重更新非常缓慢,尤其是在深度神经网络中。
  • 虽然Tanh函数相对于Sigmoid函数在某些情况下更好,因为它的输出范围在-1到1之间,但在解决梯度消失问题方面,它仍然不如一些其他激活函数,如ReLU(Rectified Linear Unit)及其变种。ReLU在正区域具有恒定梯度,因此不容易出现梯度消失问题。为了克服梯度消失问题,深度神经网络中的一种常见做法是使用ReLU或其变种,同时采用一些正则化技术和初始化策略来稳定训练过程。

2. ReLU激活函数

  • ReLU(Rectified Linear Unit)是一种常用的激活函数,它在输入大于零时输出输入值,而在输入小于或等于零时输出零。这意味着ReLU是非零中心化的,因为它的输出的均值(平均值)不是零,而是正的。这与一些其他激活函数,如tanh和Sigmoid不同,它们的输出均值通常接近于零。
  • 为什么ReLU是非零中心化的并且没有负激活值,可以归结为其定义方式。ReLU函数的数学表达式如下: f(x) = max(0, x)
  • 在这个函数中,当输入x大于零时,它输出x,而当输入x小于等于零时,输出零。这意味着ReLU在正区域(x>0)内有激活值,但在负区域(x<=0)内没有激活值。因为ReLU截断了负值,所以其均值是正的。
  • 这种非零中心化的性质有一些影响:
    1. 梯度消失问题缓解:与tanh和Sigmoid等激活函数不同,ReLU在正区域的梯度始终为1,这有助于减轻梯度消失问题,因为梯度不会在正区域消失。
    2. 稀疏激活性:由于ReLU在负区域没有激活值,神经元可以学习选择性地激活,这有助于网络的稀疏表示,这意味着每个神经元仅在特定情况下激活,而其他时候保持静止,这对于特征选择和表示学习很有用。
  • 尽管ReLU有许多优点,但它也有一些问题,例如死亡神经元问题,其中某些神经元在训练中永远保持非活跃状态。为了克服这些问题,人们发展了一些ReLU的变种,如Leaky ReLU和Parametric ReLU(PReLU),它们允许小的负输入值通过,从而改善了ReLU的性能。这些变种可以使神经网络更容易训练。

在这里插入图片描述

3. ReLU激活函数的改进

在这里插入图片描述
在这里插入图片描述

4. 近似ReLU激活函数

在这里插入图片描述

5. Maxout激活函数

  • Maxout是一种激活函数,它在深度学习中用于神经网络的非线性变换。与传统的激活函数如ReLU、Sigmoid和tanh不同,Maxout具有独特的结构,它的主要特点是取输入的最大值,因此可以视为线性片段的极大化。以下是Maxout激活函数的定义:
  • 对于Maxout激活函数,给定多个线性组合的输入,它将这些线性组合中的最大值作为输出。具体来说,考虑两个线性组合:
    Z1 = w1x + b1
    Z2 = w2
    x + b2
  • Maxout激活函数输出的值为:Maxout(x) = max(Z1, Z2)
  • Maxout的主要特点和优点包括:
    1. 非线性性质:Maxout函数是一种非线性激活函数,因为它取输入中的最大值,从而引入了非线性性质,使神经网络能够学习更复杂的函数。
    2. 灵活性:Maxout允许神经网络学习不同的线性片段,而不受限于单一的线性关系。这可以增加模型的表达能力,有助于处理各种数据分布和特征。
    3. 抗噪声性:Maxout激活函数在一定程度上对噪声具有抗性,因为它取输入中的最大值,可以消除一些不必要的噪声信号。
    4. 降低过拟合风险:Maxout具有更多的参数,允许网络在训练中拟合更多的数据,从而降低了过拟合的风险。
  • 尽管Maxout在理论上具有一些优势,但在实际应用中,它并不像ReLU那样常见。这是因为Maxout的参数数量较多,可能需要更多的数据和计算资源来训练。此外,ReLU和其变种在实践中通常表现得非常出色,因此它们更常见。然而,Maxout仍然是一个有趣的激活函数,特别适用于特定的深度学习任务和研究领域。

在这里插入图片描述

6. 自动搜索的激活函数Swish

  • Swish是一种激活函数,最初由Google研究员在2017年提出。Swish函数的定义如下:Swish(x) = x * sigmoid(x)
  • 其中,x是输入,sigmoid(x)表示x经过S型函数(Sigmoid函数)的输出。Swish函数是一种非线性激活函数,它在一定程度上结合了线性和非线性的特性。
  • Swish函数的特点和优势包括:
    1. 平滑性:Swish函数是平滑的,与ReLU等分段线性函数相比,它在激活值的变化上更加平滑。这有助于梯度的更加连续传播,有助于训练深度神经网络。
    2. 非线性性质:Swish在Sigmoid函数的基础上引入了非线性,这使得它能够捕捉更复杂的数据模式,使神经网络更具表达能力。
    3. 渐进性:与ReLU不同,Swish函数在输入趋于正无穷大时不会饱和,而是渐进地接近于线性函数x。这意味着Swish函数在正值区域仍然具有一定的非线性性质,从而有助于避免一些梯度消失问题。
    4. 可学习性:Swish函数是可学习的,它的参数(例如,Sigmoid函数的斜率)可以通过反向传播算法进行调整,以适应特定任务和数据分布。
  • 尽管Swish在理论上有一些优势,但在实践中,它的性能通常介于ReLU和Sigmoid之间。因此,选择使用Swish还是其他激活函数取决于具体的任务和实验。有时,Swish可能对某些问题效果很好,但对于其他问题,标准的ReLU或其变种仍然是首选。在深度学习中,激活函数通常是可以调整的超参数,因此可以进行实验来选择最适合特定任务的激活函数。

在这里插入图片描述

注意:部分内容来自 阿里云天池

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1126477.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

QWidget快速美化-蓝色边框圆角按钮

将代码复制进QPushButton的样式表 效果: 代码: QPushButton{ color:#52DCFE;border:2px solid #52DCFE;border-radius:5px; }QPushButton::hover{background-color:#52DCFE;color:#ffffff; }QPushButton::pressed,QPushButton::checked{background-color:#52DCFE;color:#ffff…

学习vue3

一、入门 1.引入外部库 ①直接将所有的js都通过script标签引入到html文件中&#xff0c;所有的js资源在web页面中都能通用。 ②使用js引用js&#xff08;ES6&#xff09;&#xff0c;模块导入与导出 2.模块是只读引用 这段话是在解释 Vue.js 中的概念和用法。在 Vue.js 中&a…

​​​​​​​Python---练习:使用while嵌套循环打印 9 x 9乘法表

案例 使用while嵌套循环打印 9 x 9乘法表 思考 之前做过打印出三角形&#xff0c;那个三角形是5行的&#xff0c;这次打印9行的三角形。可以先使用while嵌套循环打印9行的直角三角形 相关链接Python---练习&#xff1a;打印直角三角形&#xff08;利用wihle循环嵌套&#xf…

Ubuntu下载、安装QGIS软件的方法

本文介绍在Linux操作系统Ubuntu版本中&#xff0c;通过命令行的方式&#xff0c;配置QGIS软件的方法。 在Ubuntu等Linux系统中&#xff0c;可以对空间信息加以可视化的遥感、GIS软件很少&#xff0c;比如ArcGIS下属的ArcMap就没有对应的Linux版本&#xff08;虽然有ArcGIS Serv…

Kafka简单入门02——ISR机制

目录 ISR机制 ISR 关键概念 HW和LEO Java使用Kafka通信 Kafka 生产者示例 Kafka 消费者示例 ISR机制 Kafka 中的 ISR&#xff08;In-Sync Replicas&#xff09;机制是一种用于确保数据可靠性和一致性的重要机制。ISR 是一组副本&#xff0c;它包括分区的领导者&#xff…

CCF CSP认证历年题目自练Day38

题目 试题编号&#xff1a; 201409-3 试题名称&#xff1a; 字符串匹配 时间限制&#xff1a; 1.0s 内存限制&#xff1a; 256.0MB 问题描述&#xff1a; 问题描述   给出一个字符串和多行文字&#xff0c;在这些文字中找到字符串出现的那些行。你的程序还需支持大小写敏感…

进程之操作系统的概念

再小的努力&#xff0c;乘以365都很明显。文章目录 操作系统操作系统的概念设计操作系统的目的 管理 ps:如何理解管理如何进行管理 操作系统管理软硬件资源小总结系统调用和库函数的概念小总结 操作系统 在讲述进程的时候我们先讲述一下操作系统&#xff08;os&#xff09;,因…

基于Java的小说下载网站管理系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09; 代码参考数据库参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作者&am…

支持多用户协作的API测试工具:Apipost

在当今快速发展的数字化时代&#xff0c;API已成为企业与开发者实现数据互通、应用集成的重要桥梁。然而&#xff0c;随着API数量的不断增加&#xff0c;API开发、调试、测试、文档等工作也变得越来越复杂。为了解决这一痛点&#xff0c;一款名为Apipost的API协同研发工具应运而…

Python基础入门例程6-NP6 牛牛的小数输出

目录 描述 输入描述&#xff1a; 输出描述&#xff1a; 示例1 解答&#xff1a; 说明&#xff1a; 描述 牛牛正在学习Python的输出&#xff0c;他想要使用print函数控制小数的位数&#xff0c;你能帮助它把所有读入的数据都保留两位小数输出吗&#xff1f; 输入描述&a…

006:vue使用lottie-web实现web动画

文章目录 1. 简介2. 优点3. 效果4. 安装使用5. lottie-web 常用方法6. Lottie-web 常用的事件 1. 简介 官方介绍&#xff1a;Lottie 是一个库&#xff0c;可以解析使用AE制作的动画&#xff08;需要用bodymovie导出为json格式&#xff09;,支持web、ios、android、flutter和re…

LeetCode 22. 括号生成【字符串,回溯;动态规划】中等

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…

基于Java的线上花店管理系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09; 代码参考数据库参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作者&am…

OJ题之反转链表

hello ~~~每日一练的分享来了。 今天up主将为大家分享一个 OJ题之反转链表 题目&#xff1a;将链表实现如下的变化 1.思路的讲解&#xff1a;对于原链表我们只需改变指针的指向&#xff08;箭头&#xff09;即可 那么问题就来了&#xff0c;我们如何实现此操作&#xff1f;…

Redis设计与实现(2)链表和链表节点

每一个链表节点 typedef struct listNode{//前置节点struct listNode *prev;//后置节点struct listNode *next;//节点值void *value }lisNode; 多个listNode可以通过pre和next指针组成双端链表 虽然只要使用多个listNode结构就可以组成链表&#xff0c;但使用adlist.h/list来…

NLP入门——语言结构/语言建模

一、Linguistics 语言学 wordsmorphology 形态学&#xff1a;词的构成和内部结构研究。如英语的dog、dogs和dog-catcher有相当的关系morpheme 语素&#xff1a;最小的语法单位&#xff0c;是最小的音义结合体lexeme 词位&#xff1a;词的意义的基本抽象单位&#xff0c;是一组…

C语言_字符串和内存函数

文章目录 前言一. strlen二. strcpy三.strcat四. strcmp &#xff08;字符串比较&#xff09;五. strncpy六. strncmp七. strstr八. strtok九 . strerror perror十. 字符分类函数十一. memcpy (内存拷贝&#xff09;十二. memmove(可以重叠拷贝 也可以实现不重叠的内存拷贝) 前…

CentOS7安装部署CDH6.2.1

文章目录 CentOS7安装部署CDH6.2.1一、前言1.简介2.架构3.环境 二、环境准备1.部署服务器2.安装包准备3.修改机器名4.关闭防火墙5.关闭 SELinux6.Hosts文件7.limits文件8.设置swap空间9.关闭透明巨页内存10.免密登录 三、安装CM管理端1.安装第三方依赖包2.安装Oracle的JDK3.安装…

Rockchip RK3399 - DRM crtc基础知识

一、LCD硬件原理 1.1 CRT介绍 CRT是阴极射线管(Cathode Ray Tube)的缩写&#xff0c;它是一种使用电子束在荧光屏上创建图像的显示设备。CRT显示器在过去很长一段时间内是主流的显示技术&#xff0c;现已被液晶显示屏或其他新兴技术所替代。 在CRT显示器中&#xff0c;扫描电子…

k8s-----6、pod的镜像拉取、重启策略、资源限制

镜像拉取、重启策略、资源限制 1、镜像拉取2、资源限制3、重启机制 1、镜像拉取 [rootmaster ~]# cat nginx.yaml apiVersion: v1 kind: Pod metadata:name: mypod spec:containers:- name: nginximage: nginx:1.14imagePullPolicy: Always# IfNotPresent: 默认值&#xff0c…