基于大数据的时间序列股价预测分析与可视化 - lstm 计算机竞赛

news2024/11/18 1:36:59

文章目录

  • 1 前言
  • 2 时间序列的由来
    • 2.1 四种模型的名称:
  • 3 数据预览
  • 4 理论公式
    • 4.1 协方差
    • 4.2 相关系数
    • 4.3 scikit-learn计算相关性
  • 5 金融数据的时序分析
    • 5.1 数据概况
    • 5.2 序列变化情况计算
  • 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 毕业设计 大数据时间序列股价预测分析系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 时间序列的由来

提到时间序列分析技术,就不得不说到其中的AR/MA/ARMA/ARIMA分析模型。这四种分析方法的共同特点都是跳出变动成分的分析角度,从时间序列本身出发,力求得出前期数据与后期数据的量化关系,从而建立前期数据为自变量,后期数据为因变量的模型,达到预测的目的。来个通俗的比喻,大前天的你、前天的你、昨天的你造就了今天的你。

2.1 四种模型的名称:

  • AR模型:自回归模型(Auto Regressive model);
  • MA模型:移动平均模型(Moving Average model);
  • ARMA:自回归移动平均模型(Auto Regressive and Moving Average model);
  • ARIMA模型:差分自回归移动平均模型。
  • AR模型:

如果某个时间序列的任意数值可以表示成下面的回归方程,那么该时间序列服从p阶的自回归过程,可以表示为AR§:

在这里插入图片描述
AR模型利用前期数值与后期数值的相关关系(自相关),建立包含前期数值和后期数值的回归方程,达到预测的目的,因此成为自回归过程。这里需要解释白噪声,白噪声可以理解成时间序列数值的随机波动,这些随机波动的总和会等于0,例如,某饼干自动化生产线,要求每包饼干为500克,但是生产出来的饼干产品由于随机因素的影响,不可能精确的等于500克,而是会在500克上下波动,这些波动的总和将会等于互相抵消等于0。

3 数据预览


import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

#准备两个数组
list1 = [6,4,8]
list2 = [8,6,10]

#分别将list1,list2转为Series数组
list1_series = pd.Series(list1) 
print(list1_series)
list2_series = pd.Series(list2) 
print(list2_series)

#将两个Series转为DataFrame,对应列名分别为A和B
frame = { 'Col A': list1_series, 'Col B': list2_series } 
result = pd.DataFrame(frame)

result.plot()
plt.show()

在这里插入图片描述

4 理论公式

4.1 协方差

首先看下协方差的公式:

在这里插入图片描述

在这里插入图片描述

4.2 相关系数

计算出Cov后,就可以计算相关系数了,值在-1到1之间,越接近1,说明正相关性越大;越接近-1,则负相关性越大,0为无相关性
公式如下:

在这里插入图片描述

4.3 scikit-learn计算相关性

在这里插入图片描述


#各特征间关系的矩阵图
sns.pairplot(iris, hue=‘species’, size=3, aspect=1)

在这里插入图片描述

Andrews Curves 是一种通过将每个观察映射到函数来可视化多维数据的方法。
使用 Andrews Curves 将每个多变量观测值转换为曲线并表示傅立叶级数的系数,这对于检测时间序列数据中的异常值很有用。


plt.subplots(figsize = (10,8))
pd.plotting.andrews_curves(iris, ‘species’, colormap=‘cool’)

在这里插入图片描述
这里以经典的鸢尾花数据集为例

setosa、versicolor、virginica代表了三个品种的鸢尾花。可以看出各个特征间有交集,也有一定的分别规律。


#最后,通过热图找出数据集中不同特征之间的相关性,高正值或负值表明特征具有高度相关性:

fig=plt.gcf()
fig.set_size_inches(10,6)
fig=sns.heatmap(iris.corr(), annot=True, cmap='GnBu', linewidths=1, linecolor='k', \
square=True, mask=False, vmin=-1, vmax=1, \
cbar_kws={"orientation": "vertical"}, cbar=True)

在这里插入图片描述

5 金融数据的时序分析

主要介绍:时间序列变化情况计算、时间序列重采样以及窗口函数

5.1 数据概况


import pandas as pd

tm = pd.read_csv('/home/kesci/input/gupiao_us9955/Close.csv')
tm.head()

在这里插入图片描述

数据中各个指标含义:

  • AAPL.O | Apple Stock
  • MSFT.O | Microsoft Stock
  • INTC.O | Intel Stock
  • AMZN.O | Amazon Stock
  • GS.N | Goldman Sachs Stock
  • SPY | SPDR S&P; 500 ETF Trust
  • .SPX | S&P; 500 Index
  • .VIX | VIX Volatility Index
  • EUR= | EUR/USD Exchange Rate
  • XAU= | Gold Price
  • GDX | VanEck Vectors Gold Miners ETF
  • GLD | SPDR Gold Trust

8年期间价格(或指标)走势一览图

在这里插入图片描述

5.2 序列变化情况计算

  • 计算每一天各项指标的差异值(后一天减去前一天结果)
  • 计算pct_change:增长率也就是 (后一个值-前一个值)/前一个值)
  • 计算平均计算pct_change指标
  • 绘图观察哪个指标平均增长率最高
  • 计算连续时间的增长率(其中需要计算今天价格和昨天价格的差异)

计算每一天各项指标的差异值(后一天减去前一天结果)

在这里插入图片描述

计算pct_change:增长率也就是 (后一个值-前一个值)/前一个值)

在这里插入图片描述

计算平均计算pct_change指标
绘图观察哪个指标平均增长率最高

在这里插入图片描述
除了波动率指数(.VIX指标)增长率最高外,就是亚马逊的股价了!贝佐斯简直就是宇宙最强光头强

计算连续时间的增长率(其中需要计算今天价格和昨天价格的差异)


#第二天数据
tm.shift(1).head()

#计算增长率
rets = np.log(tm/tm.shift(1))
print(rets.tail().round(3))

#cumsum的小栗子:
print('小栗子的结果:',np.cumsum([1,2,3,4]))

#增长率做cumsum需要对log进行还原,用e^x
rets.cumsum().apply(np.exp).plot(figsize=(10,6))

在这里插入图片描述
以上是在连续时间内的增长率,也就是说,2010年的1块钱,到2018年已经变为10多块了(以亚马逊为例)

(未完待续,该项目为demo预测部分有同学需要联系学长完成)

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1125082.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Redis不止能存储字符串,还有List、Set、Hash、Zset,用对了能给你带来哪些优势?

文章目录 🌟 Redis五大数据类型的应用场景🍊 一、String🍊 二、Hash🍊 三、List🍊 四、Set🍊 五、Zset 📕我是廖志伟,一名Java开发工程师、Java领域优质创作者、CSDN博客专家、51CTO…

1300*B. Road Construction(构造菊花图)

Problem - 330B - Codeforces 解析&#xff1a; 1到任一点距离不超过二&#xff0c;并且有部分点不可以连边&#xff0c;直接统计所有不能连边的点&#xff0c;从之外的点中选一个点当作中心&#xff0c;构造菊花图即可。 #include<bits/stdc.h> using namespace std; i…

CSS常见选择器总结

1.简单选择器 简单选择器是开发中使用最多的选择器&#xff0c;包含&#xff1a; 元素选择器&#xff0c;使用元素的名称 类选择器&#xff0c;使用.类名 id选择器&#xff0c;使用#id id注意事项&#xff1a; 一个HTML文档里面的id值 是唯一的&#xff0c;不能重复 id值如…

阿里云服务器x86计算架构ECS实例规格汇总

阿里云企业级服务器基于X86架构的实例规格&#xff0c;每一个vCPU都对应一个处理器核心的超线程&#xff0c;基于ARM架构的实例规格&#xff0c;每一个vCPU都对应一个处理器的物理核心&#xff0c;具有性能稳定且资源独享的特点。阿里云服务器网aliyunfuwuqi.com分享阿里云企业…

特约|数码转型思考:Web3.0与银行

日前&#xff0c;欧科云链研究院发布重磅报告&#xff0c;引发银行界及金融监管机构广泛关注。通过拆解全球70余家银行的加密布局&#xff0c;报告认为&#xff0c;随着全球采用率的提升与相关技术的成熟&#xff0c;加密资产已成为银行业不容忽视也不能错过的创新领域。 作为…

尚硅谷kafka3.0.0

目录 &#x1f483;概述 ⛹定义 ​编辑⛹消息队列 &#x1f938;‍♂️消息队列应用场景 ​编辑&#x1f938;‍♂️两种模式&#xff1a;点对点、发布订阅 ​编辑⛹基本概念 &#x1f483;Kafka安装 ⛹ zookeeper安装 ⛹集群规划 ​编辑⛹流程 ⛹原神启动 &#x1f938;‍♂️…

gRPC之gateway集成swagger

1、gateway集成swagger 1、为了简化实战过程&#xff0c;gRPC-Gateway暴露的服务并未使用https&#xff0c;而是http&#xff0c;但是swagger-ui提供的调用服 务却是https的&#xff0c;因此要在proto文件中指定swagger以http调用服务&#xff0c;指定的时候会用到文件 prot…

WebService SOAP1.1 SOAP1.12 HTTP PSOT方式调用

Visual Studio 2022 新建WebService项目 创建之后启动运行 设置默认文档即可 经过上面的创建WebService已经创建完成&#xff0c;添加HelloWorld3方法&#xff0c; [WebMethod] public string HelloWorld3(int a, string b) { //var s a b; return $"Hello World ab{a …

Markdown语法详解

文章目录 [toc] 一、简介二、样式1. 标题2. 字体3. 引用4. 分割线5. 图片6. 超链接7. 列表8. 表格9. 代码 一、简介 以前写学习文档常用的软件都是Word或者CSDN自带的编辑器&#xff0c;但Word用起来不太灵活&#xff0c;而CSDN自带编辑器又感觉逼格不够&#xff08;主要原因&…

(自我剖析一下我博客“问答”中的第三个问题)准确率一直居低不上是什么原因引起的?

我提的问题是&#xff1a; “我使用单层GRU训练minist数据集时&#xff0c;准确率一直处于下图的状态是为什么&#xff1f; 什么原因引起的&#xff1f;” 这种debug就比较难受&#xff0c;因为程序是能跑的&#xff0c;任何“error”都没有出。这就表明在程序中有某些小细节没…

【SwiftUI模块】0060、SwiftUI基于Firebase搭建一个类似InstagramApp 3/7部分-搭建TabBar

SwiftUI模块系列 - 已更新60篇 SwiftUI项目 - 已更新5个项目 往期Demo源码下载 技术:SwiftUI、SwiftUI4.0、Instagram、Firebase 运行环境: SwiftUI4.0 Xcode14 MacOS12.6 iPhone Simulator iPhone 14 Pro Max SwiftUI基于Firebase搭建一个类似InstagramApp 3/7部分-搭建Tab…

数据集的特征提取

1、 特征提取 1.1、 将任意数据&#xff08;如文本或图像&#xff09;转换为可用于机器学习的数字特征 注&#xff1a;特征值化是为了计算机更好的去理解数据 字典特征提取(特征离散化)文本特征提取图像特征提取&#xff08;深度学习将介绍&#xff09; 2 特征提取API sklear…

Python OpenCV通过灰度平均值进行二值化处理以减少像素误差

Python OpenCV通过灰度平均值进行二值化处理以减少像素误差 前言前提条件相关介绍实验环境通过灰度平均值进行二值化处理以减少像素误差固定阈值二值化代码实现 灰度平均值二值化代码实现 前言 由于本人水平有限&#xff0c;难免出现错漏&#xff0c;敬请批评改正。更多精彩内容…

数据安全与PostgreSQL:最佳保护策略

在当今数字化时代&#xff0c;数据安全成为了企业不可或缺的一环。特别是对于使用数据库管理系统&#xff08;DBMS&#xff09;的组织来说&#xff0c;确保数据的完整性、保密性和可用性至关重要。在众多DBMS中&#xff0c;PostgreSQL作为一个强大而灵活的开源数据库系统&#…

酒类商城小程序怎么做

随着互联网的快速发展&#xff0c;线上购物越来越普及。酒类商品也慢慢转向线上销售&#xff0c;如何搭建一个属于自己的酒类小程序商城呢&#xff1f;下面就让我们一起来看看吧&#xff01; 一、登录乔拓云平台 首先&#xff0c;我们需要进入乔拓云平台的后台&#xff0c;点击…

Pytorch公共数据集、tensorboard、DataLoader使用

本文将主要介绍torchvision.datasets的使用&#xff0c;并以CIFAR-10为例进行介绍&#xff0c;对可视化工具tensorboard进行介绍&#xff0c;包括安装&#xff0c;使用&#xff0c;可视化过程等&#xff0c;最后介绍DataLoader的使用。希望对你有帮助 Pytorch公共数据集 torc…

【第三天】C++类和对象进阶指南:从堆区空间操作到友元的深度掌握

一、new和delete 堆区空间操作 1、new和delete操作基本类型的空间 new与C语言中malloc、delete和C语言中free 作用基本相同 区别&#xff1a; new 不用强制类型转换 new在申请空间的时候可以 初始化空间内容 2、 new申请基本类型的数组 3、new和delete操作类的空间 4、new申请…

【SwiftUI模块】0060、SwiftUI基于Firebase搭建一个类似InstagramApp 2/7部分-搭建TabBar

SwiftUI模块系列 - 已更新60篇 SwiftUI项目 - 已更新5个项目 往期Demo源码下载 技术:SwiftUI、SwiftUI4.0、Instagram、Firebase 运行环境: SwiftUI4.0 Xcode14 MacOS12.6 iPhone Simulator iPhone 14 Pro Max SwiftUI基于Firebase搭建一个类似InstagramApp 2/7部分-搭建Tab…

构建离线应用:Apollo与本地状态管理

前言 「作者主页」&#xff1a;雪碧有白泡泡 「个人网站」&#xff1a;雪碧的个人网站 「推荐专栏」&#xff1a; ★java一站式服务 ★ ★ React从入门到精通★ ★前端炫酷代码分享 ★ ★ 从0到英雄&#xff0c;vue成神之路★ ★ uniapp-从构建到提升★ ★ 从0到英雄&#xff…

网络流探索:解决网络最大流问题的算法集锦

1.初识网络流 网络流一直是初学者心中很难过去的一道坎&#xff0c;很多人说它是一个不像DFS/BFS那么直观的算法&#xff0c;同时网上也有各种参差不齐的材料&#xff0c;让人感到一知半解。 如果你也有这样的感觉&#xff0c;那么不要灰心&#xff0c;坚持住&#xff0c;因为…