pytorch 入门 (三)案例一:mnist手写数字识别

news2025/1/9 2:11:34

本文为🔗小白入门Pytorch内部限免文章

  • 🍨 本文为🔗小白入门Pytorch中的学习记录博客
  • 🍦 参考文章:【小白入门Pytorch】mnist手写数字识别
  • 🍖 原作者:K同学啊

目录

  • 一、 前期准备
    • 1. 设置GPU
    • 2. 导入数据
    • 3. 查看数据及可视化
      • 3.1 方式一:
      • 3.1 方式二:
  • 二、构建简单的CNN网络
  • 三、 训练模型
    • 1. 设置超参数
    • 2. 编写训练函数
    • 3. 编写测试函数
    • 4. 正式训练
  • 四、 结果可视化
  • 五、知识点详解

一、 前期准备

import torch

print(torch.__version__) # 查看pytorch版本,注意如果是使用和鲸自带的环境,需要正确选择,否则下一步导入torchvision可能会报错
1.8.1+cpu

C:\Users\chengyuanting\.conda\envs\pytorch_cpu\lib\site-packages\tqdm\auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
  from .autonotebook import tqdm as notebook_tqdm

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
import numpy as np
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device
device(type='cpu')

2. 导入数据

使用dataset下载MNIST数据集,并划分好训练集与测试集

使用dataloader加载数据,并设置好基本的batch_size

torchvision.datasets.MNIST详解

torchvision.datasets是Pytorch自带的一个数据库,我们可以通过代码在线下载数据,这里使用的是torchvision.datasets中的MNIST数据集。

函数原型:

torchvision.datasets.MNIST(root, train=True, transform=None, target_transform=None, download=False)  

参数说明:

  • root (string) :数据地址
  • train (string) :True = 训练集,False = 测试集
  • download (bool,optional) : 如果为True,从互联网上下载数据集,并把数据集放在root目录下。
  • transform (callable, optional ):这里的参数选择一个你想要的数据转化函数,直接完成数据转化
  • target_transform (callable,optional) :接受目标并对其进行转换的函数/转换。
train_ds = torchvision.datasets.MNIST('data', 
                                      train=True, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

test_ds  = torchvision.datasets.MNIST('data', 
                                      train=False, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

torch.utils.data.DataLoader详解

torch.utils.data.DataLoader是Pytorch自带的一个数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。

函数原型:

torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=None, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None, generator=None, *, prefetch_factor=2, persistent_workers=False, pin_memory_device=‘’)

参数说明:

  • dataset(string) :加载的数据集
  • batch_size (int,optional) :每批加载的样本大小(默认值:1)
  • shuffle(bool,optional) : 如果为True,每个epoch重新排列数据。
  • sampler (Sampler or iterable, optional) : 定义从数据集中抽取样本的策略。 可以是任何实现了 len 的 Iterable。 如果指定,则不得指定 shuffle 。
  • batch_sampler (Sampler or iterable, optional) : 类似于sampler,但一次返回一批索引。与 batch_size、shuffle、sampler 和 drop_last 互斥。
  • num_workers(int,optional) : 用于数据加载的子进程数。 0 表示数据将在主进程中加载(默认值:0)。
  • pin_memory (bool,optional) : 如果为 True,数据加载器将在返回之前将张量复制到设备/CUDA 固定内存中。 如果数据元素是自定义类型,或者collate_fn返回一个自定义类型的批次。
  • drop_last(bool,optional) : 如果数据集大小不能被批次大小整除,则设置为 True 以删除最后一个不完整的批次。 如果 False 并且数据集的大小不能被批大小整除,则最后一批将保留。 (默认值:False)
  • timeout(numeric,optional) : 设置数据读取的超时时间 , 超过这个时间还没读取到数据的话就会报错。(默认值:0)
  • worker_init_fn(callable,optional) : 如果不是 None,这将在步长之后和数据加载之前在每个工作子进程上调用,并使用工作 id([0,num_workers - 1] 中的一个 int)的顺序逐个导入。 (默认:None)
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds, 
                                       batch_size=batch_size, 
                                       shuffle=True)

test_dl  = torch.utils.data.DataLoader(test_ds, 
                                       batch_size=batch_size)

3. 查看数据及可视化

3.1 方式一:

# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl)) # 由于数据加载器被设置为随机打乱数据(shuffle=True),因此每次调用next函数时,都会从数据集中随机选择一个批次的数据。
imgs.shape
torch.Size([32, 1, 28, 28])

squeeze()函数的功能是从矩阵shape中,去掉维度为1的。例如一个矩阵是的shape是(5, 1),使用过这个函数后,结果为(5, )。

#指定图片大小,图像大小为20宽,5高的绘图(单位为英寸inch)
plt.figure(figsize=(20,5))
for i,img in enumerate(imgs[:20]):
    # 维度缩减
    npimg = np.squeeze(img.numpy())
    plt.subplot(2,10,i+1) # 将整个figure分成2行10列,绘制第i+1个子图
    plt.imshow(npimg,cmap=plt.cm.binary)
    plt.axis('off') # 这行代码关闭了当前子图的坐标轴,使得图像没有任何坐标轴标签或刻度。

请添加图片描述

3.1 方式二:

#其他方式查看数据情况
"""
说明:
这段代码的目的是从MNIST训练数据集中取前10个样本,
并在2行5列的布局中显示这些样本的图像和标签。
"""
# 查看数据的数量:
print(len(train_ds))
# 查看单个样本:
image,label = train_ds[0]
print("Label:",label)

# plt.imshow(image,cmap='gray') # 为了在matplotlib中正确显示该图像,您需要将其从(1, 28, 28)变形为(28, 28)。这可以通过使用numpy的squeeze函数来实现。
# 将图像张量转换为numpy数组并移除单通道维度
image_np = image.numpy().squeeze()
plt.imshow(image_np,cmap = 'gray')
plt.show()

# 查看图像的尺寸:
print("图像尺寸:",image.size)
print("图像尺寸(移除单通道):",image_np.size)

# 查看多个样本:
fig,axes = plt.subplots(2,5,figsize = (10,5)) # 使用plt.subplots函数创建一个绘图窗口(figure:10英寸宽5英寸高)和一组子图(axes)。
for i,ax in enumerate(axes.ravel()):  # 这里,axes是一个2x5的数组,所以使用ravel()函数将其转变为一个长度为10的一维数组,方便遍历。
    image,label = train_ds[i] # image是一个表示图像的张量,label是图像对应的标签。
    
    # 将图像张量转换为numpy数组并移除单通道维度
    image_np = image.numpy().squeeze()
    
    ax.imshow(image_np,cmap = 'gray') # 使用子图对象ax的imshow方法显示图像。cmap='gray'指定使用灰度颜色映射。
    ax.set_title(f"Label:{label}")
    ax.axis('off')
plt.tight_layout() # 调整子图之间的间距,确保它们不会彼此重叠。
plt.show() # 显示绘图窗口和所有子图。
60000
Label: 5

在这里插入图片描述

图像尺寸: <built-in method size of Tensor object at 0x0000022EC1D81CC0>
图像尺寸(移除单通道): 784

在这里插入图片描述

二、构建简单的CNN网络

对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

  • nn.Conv2d为卷积层,用于提取图片的特征,传入参数为输入channel,输出channel,池化核大小
  • nn.MaxPool2d为池化层,进行下采样,用更高层的抽象表示图像特征,传入参数为池化核大小
  • nn.ReLU为激活函数,使模型可以拟合非线性数据
  • nn.Linear为全连接层,可以起到特征提取器的作用,最后一层的全连接层也可以认为是输出层,传入参数为输入特征数和输出特征数(输入特征数由特征提取网络计算得到,如果不会计算可以直接运行网络,报错中会提示输入特征数的大小,下方网络中第一个全连接层的输入特征数为1600)
  • nn.Sequential可以按构造顺序连接网络,在初始化阶段就设定好网络结构,不需要在前向传播中重新写一遍

网络结构图

Image Name

import torch.nn.functional as F

num_classes = 10  # 图片的类别数

class Model(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)  # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(2)                  # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(2) 
                                      
        # 分类网络
        self.fc1 = nn.Linear(1600, 64)          
        self.fc2 = nn.Linear(64, num_classes)
     # 前向传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))     
        x = self.pool2(F.relu(self.conv2(x)))

        x = torch.flatten(x,start_dim = 1) # x.view(x.size(0), -1) 展平张量

        x = F.relu(self.fc1(x))
        x = self.fc2(x)
       
        return x

加载并打印模型

!pip install torchinfo -i https://pypi.mirrors.ustc.edu.cn/simple/
Defaulting to user installation because normal site-packages is not writeable
Looking in indexes: https://pypi.mirrors.ustc.edu.cn/simple/
Requirement already satisfied: torchinfo in c:\users\chengyuanting\appdata\roaming\python\python39\site-packages (1.8.0)
from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)

summary(model)
=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
Model                                    --
├─Conv2d: 1-1                            320
├─MaxPool2d: 1-2                         --
├─Conv2d: 1-3                            18,496
├─MaxPool2d: 1-4                         --
├─Linear: 1-5                            102,464
├─Linear: 1-6                            650
=================================================================
Total params: 121,930
Trainable params: 121,930
Non-trainable params: 0
=================================================================
# 也可以直接查看模型,但是这样不显示参数数量
model
Model(
  (conv1): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))
  (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))
  (pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (fc1): Linear(in_features=1600, out_features=64, bias=True)
  (fc2): Linear(in_features=64, out_features=10, bias=True)
)

三、 训练模型

1. 设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2. 编写训练函数

1. optimizer.zero_grad()

函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。

2. loss.backward()

PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。

具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。

更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。

如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。

3. optimizer.step()

step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。

注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss
  • pred.argmax(1) 返回数组 pred 在第一个轴(即行)上最大值所在的索引。这通常用于多类分类问题中,其中 pred 是一个包含预测概率的二维数组,每行表示一个样本的预测概率分布。
  • (pred.argmax(1) == y)是一个布尔值,其中等号是否成立代表对应样本的预测是否正确(True 表示正确,False 表示错误)。
  • .type(torch.float)是将布尔数组的数据类型转换为浮点数类型,即将 True 转换为 1.0,将 False 转换为 0.0。
  • .sum()是对数组中的元素求和,计算出预测正确的样本数量。
  • .item()将求和结果转换为标量值,以便在 Python 中使用或打印。

(pred.argmax(1) == y).type(torch.float).sum().item()表示计算预测正确的样本数量,并将其作为一个标量值返回。这通常用于评估分类模型的准确率或计算分类问题的正确预测数量。

3. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4. 正式训练

1. model.train()

model.train()的作用是启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropoutmodel.train()是随机取一部分网络连接来训练更新参数。

2. model.eval()

model.eval()的作用是不启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropoutmodel.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

epochs     = 5
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
Epoch: 1, Train_acc:78.2%, Train_loss:0.732, Test_acc:92.3%,Test_loss:0.255
Epoch: 2, Train_acc:94.3%, Train_loss:0.191, Test_acc:96.2%,Test_loss:0.123
Epoch: 3, Train_acc:96.3%, Train_loss:0.121, Test_acc:97.4%,Test_loss:0.091
Epoch: 4, Train_acc:97.1%, Train_loss:0.094, Test_acc:98.0%,Test_loss:0.067
Epoch: 5, Train_acc:97.6%, Train_loss:0.079, Test_acc:98.1%,Test_loss:0.061
Done

四、 结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

五、知识点详解

本文使用的是最简单的CNN模型,如果是第一次接触深度学习的话,可以先试着把代码跑通,然后再尝试去理解其中的代码。

  1. MNIST手写数字数据集介绍

MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一。数据集中的数字图片是由250个不同职业的人纯手写绘制,数据集获取的网址为:http://yann.lecun.com/exdb/mnist/ (下载后需解压)。我们一般会采用(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()这行代码直接调用,这样就比较简单

MNIST手写数字数据集中包含了70000张图片,其中60000张为训练数据,10000为测试数据,70000张图片均是28*28,数据集样本如下:

Image Name

如果我们把每一张图片中的像素转换为向量,则得到长度为28*28=784的向量。因此我们可以把训练集看成是一个[60000,784]的张量,第一个维度表示图片的索引,第二个维度表示每张图片中的像素点。而图片里的每个像素点的值介于0-1之间。

Image Name

  1. 神经网络程序说明

神经网络程序可以简单概括如下:

Image Name


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1116400.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

聊聊分布式架构09——分布式中的一致性协议

目录 01从集中式到分布式 系统特点 集中式特点 分布式特点 事务处理差异 02一致性协议与Paxos算法 2PC&#xff08;Two-Phase Commit&#xff09; 阶段一&#xff1a;提交事务请求 阶段二&#xff1a;执行事务提交 优缺点 3PC&#xff08;Three-Phase Commit&#x…

kubeadm初始化搭建cri-dockerd记录 containerd.io

07.尚硅谷_搭建K8s集群&#xff08;kubeadm方式&#xff09;-部署master节点_哔哩哔哩_bilibili 视频里的版本只有1.17而现在&#xff08;2023.10.20&#xff09;kubernetes最新版本是1.28&#xff0c;需要搭载cri-dockerd&#xff0c; 先去网站下载了对应的rpm包cri-dockerd…

计算机算法分析与设计(14)---贪心算法(会场安排问题和最优服务次序问题)

文章目录 一、会场安排问题1.1 问题描述1.2 思路分析1.3 例题分析1.4 代码编写 二、最优服务次序问题2.1 问题描述2.2 思路分析2.3 代码编写 一、会场安排问题 1.1 问题描述 假设在足够多的会场里安排一批活动&#xff0c;并希望使用尽可能少的会场。设计一个有效的贪心算法进…

kettle 导出Excel 日期信息为空bug

今天做个需求&#xff0c;跨库联表查询数据。导出为Excel &#xff0c;但是日期数据除了问题。日期yyyy/mm/dd hh:mm:ss 竟然是空的 。 解决办法&#xff1a; 一、&#xff08;网上给出最多的解决方案&#xff0c;但本人不实用。需要安装MySQL监听&#xff09; to_char(日期,…

Mojo——会燃的 AI 编程语言

点击链接了解详情 导语&#xff1a;本文简介 Mojo 的背景与特点&#xff0c;并分享如何通过腾讯云 Cloudstudio 的 WebIDE 和分享社区快速学习和上手 Mojo。 &#x1f525;&#x1f525;&#x1f525; 腾讯云 Cloud Studio 已开放 Mojo 应用模版。 什么是 Mojo Mojo 是基于 P…

CodeFormer和GFPGAN的本地部署与效果对比

CodeFormer和GFPGAN是两个图片人脸修复的开源程序&#xff0c;两个程序不相伯仲&#xff0c;效果都非常棒&#xff0c;在stable diffusion中这两个插件都有集成进去&#xff01;我们今天就将这两个程序的本地独立安装和使用方法记录一下&#xff01; CodeFormer github主页地址…

【前端】使用tesseract插件识别提取图片中的文字

前言 有时候项目需要识别证照信息&#xff0c;或者拍照搜索内容等。图片处理一般是后端处理比较好&#xff0c;不过前端也有相关插件处理&#xff0c;tesseract.js就是一种前端处理方案。 使用tesseract tesseract更多的语言模型&#xff1a;language配置 安装 Tesseract.…

react中JSX基础与useState的基本使用 + 评论显示删除需求案例

参考视频&#xff1a;https://www.bilibili.com/video/BV1ZB4y1Z7o8/?p3&spm_id_frompageDriver&vd_source5c584bd3b474d579d0bbbffdf0437c70 如果没有安装create-react-app需要先全局安装 命令&#xff1a;npm i -g create-react-app1.快速搭建开发环境 create-re…

国内有哪些做得好的企业协同办公软件

在当今信息化时代&#xff0c;企业协同办公软件成为了提升企业效率和推动协作的重要工具。国内市场涌现出许多优秀的企业协同办公软件&#xff0c;为企业提供了高效、便捷的协同办公解决方案。在本文中&#xff0c;我们将向大家介绍3款在国内好评如潮的企业协同办公软件&#x…

驱动day2 字符设备驱动 LED亮灯

可参考arm点灯C语言 cortex-A7核 点LED灯 &#xff08;附 汇编实现、使用C语言 循环实现、使用C语言 封装函数实现【重要、常用】&#xff09;-CSDN博客 1 应用程序 test.c #include <stdio.h> #include <sys/types.h> #include <sys/stat.h> #include <…

Adobe 推出 Photoshop Elements 2024 新版

&#x1f989; AI新闻 &#x1f680; Adobe 推出 Photoshop Elements 2024 新版 摘要:Adobe 最新发布 Photoshop Elements 2024 版本,新增引入 AI 功能,提供匹配颜色、创建照片卷、一键选择照片天空或背景等新功能,界面也进行了优化更新。本次发布重点加强了 AI 支持,简化复杂…

软考系列(系统架构师)- 2019年系统架构师软考案例分析考点

试题一 软件架构&#xff08;架构风格、质量属性&#xff09; 【问题1】&#xff08;13分&#xff09; 针对用户级别与折扣规则管理功能的架构设计问题&#xff0c;李工建议采用面向对象的架构风格&#xff0c;而王工则建议采用基于规则的架构风格。请指出该系统更适合采用哪种…

ant design vue Message 用法以及内容为 html片段情况

ant design vue 的 Message 用法 全局展示操作反馈信息 何时使用 # 可提供成功、警告和错误等反馈信息。顶部居中显示并自动消失&#xff0c;是一种不打断用户操作的轻量级提示方式。 全局配置&#xff1a; // main.ts// 进行全局配置 message.config({top: 0.7rem,//高度…

Qt作业九

1、思维导图 2、作业 widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTimer> #include <QTime> #include <QTimerEvent> #include <QTextToSpeech>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAME…

面向对象设计原则,详细介绍及分析

一、介绍&#xff1a; 面向对象设计原则是面向对象设计的基石&#xff0c;是面向对象设计的质量、保障、思想。 一共有七个设计原则&#xff0c;设计模式就是面向对象设计原则的经典应用 单一职责原则* 强调&#xff1a;高内聚低耦合&#xff0c;每一种类型的业务区分 开闭原则…

计算各数位的和是否相等(桶排)

// 分别计算左右两边各数的和&#xff0c;不同值时的数量 eg.四位数&#xff0c;左边数的有10~99&#xff0c;右边数有00~99 和有1~18 和有0~18 桶排&#xff0c;和相同放一个桶&#xff0c;分别计算左右两边不同和的数量 while (len < 8){int left[50] …

2023区块链国赛有黑幕

2023全国职业院校技能大赛区块链技术应用赛项 有黑幕&#xff01;&#xff01;河北软件职业技术学院举行的全国职业院校技能大赛区块链技术应用赛项违反比赛公平原则&#xff1a; 1、在评分阶段居然允许企业人员进入裁判所在区域&#xff0c;偏向性的引导裁判评分&#xff0c…

只需五步,在Linux安装chrome及chromedriver(CentOS)

一、安装Chrome 1&#xff09;先执行命令下载chrome&#xff1a; wget https://dl.google.com/linux/direct/google-chrome-stable_current_x86_64.rpm2&#xff09;安装chrome yum localinstall google-chrome-stable_current_x86_64.rpm看到下图中的Complete出现则代表安装…

网络安全—自学笔记

目录 一、自学网络安全学习的误区和陷阱 二、学习网络安全的一些前期准备 三、网络安全学习路线 四、学习资料的推荐 想自学网络安全&#xff08;黑客技术&#xff09;首先你得了解什么是网络安全&#xff01;什么是黑客&#xff01; 网络安全可以基于攻击和防御视角来分类…

搭建哨兵架构(windows)

参考文章&#xff1a;Windows CMD常用命令大全&#xff08;值得收藏&#xff09;_cmd命令-CSDN博客 搭建哨兵架构&#xff1a;redis-server.exe sentinel.conf --sentinel 1.在主节点上创建哨兵配置 - 在Master对应redis.conf同目录下新建sentinel.conf文件&#xff0c;名字绝…