【二叉树进阶】AVLTree-平衡二叉搜索树

news2024/11/17 21:37:01

文章目录

  • 1、AVL树
    • 1.1、AVL树的概念
    • 1.2 AVL树节点的定义
    • 1.3 AVL树 - 插入节点
      • 1.3.1 插入新节点
      • 1.3.2 更新树的平衡因子
      • 1.3.3 根据更新后BF的情况,进行平衡化操作
  • 2 AVL树的验证
    • 2.1 AVL树 - 删除节点(了解)
    • 2.2 AVL树的性能

1、AVL树

1.1、AVL树的概念

二叉搜索树(binary search tree)虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树(最坏的情况如下图左单支所示),查找元素相当于在顺序表中搜索元素,效率低下
在这里插入图片描述
因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。 一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  1. 它的左右子树都是AVL树
  2. 左右子树高度之差(简称平衡因子)的绝对值不超过1(高度差:-1/0/1)
    在这里插入图片描述
    如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在
    O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度O( l o g 2 n log_2 n log2n)。

1.2 AVL树节点的定义

AVL树的节点采用三叉链结构,其中包含指向左右子节点的指针和指向父亲的指针。数据存储在键值对中,使用pair对象表示。为了保持树的平衡,引入了平衡因子来判断是否需要进行平衡操作。

// AVL树节点的定义(KV模型)
template<class K, class V>
struct AVLTreeNode
{
	pair<K, V> _kv;  // 键值对
	int _bf;         // 平衡因子(balance factor) = 右子树高度 - 左子树高度
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent; // 双亲指针

	// 构造函数
	AVLTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		,_bf(0)
		,_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
	{}
};

// AVL树的定义(KV模型)
template<class K, class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;

private:
	Node* _root;

public:
	// 成员函数
}

1.3 AVL树 - 插入节点

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为3步:

  1. 插入新节点
  2. 更新树的平衡因子
  3. 根据更新后树的平衡因子的情况,来控制树的平衡(旋转操作)

1.3.1 插入新节点

和二叉搜索树插入方式一样,先查找,再插入。

// 插入节点
bool AVLTree::Insert(const pair<K, V>& kv)
{
    // 如果树为空,则直接插入节点
    if (_root == nullptr)
    {
        _root = new Node(kv);
        return true;
    }

    // 如果树不为空,找到适合插入节点的空位置
    Node* parent = nullptr;  // 记录当前节点的父亲
    Node* cur = _root;       // 记录当前节点
    while (cur)
    {
        if(kv.first > cur->_kv.first) // 插入节点键值k大于当前节点
        {
            parent = cur;
            cur = cur->_right;
        }
        else if(kv.first < cur->_kv.first) // 插入节点键值k小于当前节点
        { 
            parent = cur;
            cur = cur->_left;
        }
        else // 插入节点键值k等于当前节点
        {
            return false;
        }
    }
    // while循环结束,说明找到适合插入节点的空位置了

    // 插入新节点
    cur = new Node(kv); // 申请新节点
    // 判断当前节点是父亲的左孩子还是右孩子
    if (cur->_kv.first > parent->_kv.first)
    {
        parent->_right = cur;
        cur->_parent = parent;

    }
    else
    {
        parent->_left = cur;
        cur->_parent = parent;
    }

    //...................................
    // 这些写更新平衡因子,和控制树的平衡的代码
    //...................................
    
    // 插入成功
    return true;
}

1.3.2 更新树的平衡因子

插入新节点后,该节点到根节点之间的所有祖先节点的平衡因子可能会受到影响。根据不同的情况,需要更新它们的平衡因子。

  1. 如果插入在「新节点父亲」的右边,父亲的平衡因子++( _bf++ )
  2. 如果插入在「新节点父亲」的左边,父亲的平衡因子–( _bf-- )

「新节点父亲」的平衡因子更新以后,又会分为 3 种情况:

  1. 如果更新以后,平衡因子是 1 或者 -1(则之前一定为 0),说明父亲所在子树高度变了,需要继续往上更新。(最坏情况:往上一直更新到根节点)
    在这里插入图片描述
    2、如果更新以后,平衡因子是 0(则之前一定为 1 或者 -1),说明父亲所在子树高度没变(因为把矮的那边给填补上了),不需要继续往上更新。
    在这里插入图片描述
    3、如果更新以后,平衡因子是 2 或者 -2,说明父亲所在子树出现了不平衡,需要旋转处理,让它平衡。
    在这里插入图片描述
    代码如下:
while (parent) // 最坏情况:更新到根节点
{
    // 更新新节点父亲的平衡因子

    if (cur == parent->_left) // 新节点插入在父亲的左边
    {
        parent->_bf--;
    }
    else // 新节点插入在父亲的右边
    {
        parent->_bf++;
    }

    // 检查新节点父亲的平衡因子

    // 1、父亲所在子树高度变了,需要继续往上更新
    if (parent->_bf == 1 || parent->_bf == -1)
    {
        cur = parent;
        parent = cur->_parent;
    }
    // 2、父亲所在子树高度没变,不用继续往上更新
    else if (parent->_bf == 0)
    {
        break;
    }
    // 3、父亲所在子树出现了不平衡,需要旋转处理
    else if (parent->_bf == 2 || parent->_bf == -2)
    {
        // 这里写对树进行平衡化操作,旋转处理的代码,分为4种情况:
        
        /*................................................*/
        // 3.1、父节点的左边高,右边低,需要往右旋
        if (parent->_bf == -2 && cur->_bf == -1)
        {
            // 右单旋
            treeRotateRight(parent); 
        }
        
        // 3.2、父节点的右边高,左边低,需要往左旋
        else if (parent->_bf == 2 && cur->_bf == 1)
        {
            // 左单旋
            treeRotateLeft(parent); 
        }
        
        // 3.3、父节点的左边高,且父节点左孩子的右边高
        else if(parent->_bf == -2 && cur->_bf == 1)
        {
            // 左右双旋
            treeRotateLR(parent);
        }
        
        // 3.4、父节点的右边高,且父节点右孩子的左边高
        else if(parent->_bf == 2 && cur->_bf == -1)
        {
            // 右左双旋
            treeRotateRL(parent);
        }
        
        else // 只有上述4种情况,没有其它情况,所以这里直接报错处理
        {
            assert(false);
        }
        
        break; // 旋转完成,树已平衡,退出循环
        
        /*................................................*/
    }
    // 4、除了上述3种情况,平衡因子不可能有其它的值,报错处理
    else
    {
        assert(false);
    }
}

1.3.3 根据更新后BF的情况,进行平衡化操作

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为4种:

旋转的本质:在遵循二叉搜索树的规则下,让左右均衡,降低整棵树的高度。

该进行哪种旋转操作?– 引发旋转的路径是直线就是单旋,如果是折线就是双旋。

👇注意:此处看到的树,可能是一颗完整的树,也可能是一颗子树。
① 右单旋 - 新节点插入较高左子树的最左侧
将新的节点插入到了 parent 左孩子的左子树上,导致的不平衡的情况。
在这里插入图片描述
上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左子树高度增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能让其成为30的右子树,而如果30有右子树,右子树根的值一定大于30,小于60,只能让其成为60的左子树,旋转完成后,更新节点的平衡因子即可。
引发右单旋的条件:

  1. 父亲左边高,右边低,所以要让父亲往右旋。
  2. parent 的平衡因子为 -2,parent 左孩子平衡因子为 -1,观察发现,平衡因子都是负数,说明是左边高,也说明了==【引发旋转的路径是一条直线】==,所以我们要右旋操作。
    右单旋操作:
  3. 让 subL 的右子树 subLR 成为 parent 的左子树(因为 subLR 的右子树根节点值大于30,小于60)
  4. 让 parent 成为 subL 的右子树(因为60大于30)
  5. 让 subL 变成这个子树的根
    这一步操作前需要先判断下:parent 是根节点,还是一个普通子树
    如果是根节点,则更新 subL 为新的根
    如果是普通子树(可能是某个节点的左子树,也可能是右子树,这里需要判断下),然后更新 subL 为这个子树的根节点
  6. 根据树的结构,更新 parent 和 subL 的平衡因子为0
    在旋转过程中,更新双亲指针的指向,有以下几种情况需要考虑:
  7. subL 的右子树 subLR 可能存在,也可能为空。(当不为空时才更新 subL 右子树 subLR 的双亲指针指向)
  8. 旋转完成后,subL 的双亲节点,可能是空,也可能是 parent 原先的父节点。(所以更新 subL 的双亲指针前需要判断下)
    代码如下:

总的来说,就是依次调整 subLR、parent、subL 的位置和双亲指针的指向。

// 右单旋
void treeRotateRight(Node* parent)
{
    // subL:parent的左孩子
    // subLR:parent左孩子的右孩子
    Node* subL = parent->_left;
    Node* subLR = parent->_left->_right;

    // 1、让subL的右子树subLR成为parent的左子树
    parent->_left = subLR;
    // 1.1、如果subLR不为空
    if (subLR)
    {
        subLR->_parent = parent; // 更新subLR的双亲指针,指向parent
    }

    // 2、让parent成为subL的右子树
    subL->_right = parent;

    // 2.1、记录下parent的父节点
    Node* ppNode = parent->_parent;

    // 2.2、更新parent的双亲指针,指向subL
    parent->_parent = subL;

    // 2.3、判断parent是不是根节点
    // 是根节点
    if (parent == _root)
    {
        _root = subL;            // 更新subL为新的根
        subL->_parent = nullptr; // 更新subL的双亲指针,指向空
    }
    // 不是根节点,就是一个普通子树
    else
    {
        // 判断parent原先是左孩子还是右孩子
        if (ppNode->_left == parent)
        {
            ppNode->_left = subL; // parent原先的双亲节点接管subL,subL为这个子树的根
        }
        else
        {
            ppNode->_right = subL;
        }

        subL->_parent = ppNode; // 更新subL的双亲指针
    }

    // 根据调整后的结构更新parent和subL的平衡因子
    parent->_bf = subL->_bf = 0;
}

② 左单旋 - 新节点插入较高右子树的最右侧
将新的节点插入到了 parent 右孩子的右子树上,导致的不平衡的情况。
在这里插入图片描述

引发左单旋的条件:

父亲右边高,左边低,所以要让父亲往左旋。
parent 的平衡因子为 2,parent 右孩子平衡因子为 1,观察发现,平衡因子都是正数,说明是右边高,也说明了==【引发旋转的路径是一条直线】==,所以我们要左旋操作。

左单旋操作:

  1. 让 subR 的左子树 subRL 成为 parent 的右子树(因为 subRL 的左子树根节点值大于30,小于60)
  2. 让 parent 成为 subR 的左子树(因为30小于60)
  3. 让 subR 变成这个子树的根
    这一步操作前需要先判断下:parent 是根节点,还是一个普通子树
    如果是根节点,则更新 subR 为新的根
    如果是普通子树(可能是某个节点的左子树,也可能是右子树,这里需要判断下),然后更新 subR 为这个子树的根节点
    根据树的结构,更新 parent 和 subR 的平衡因子为0

在旋转过程中,更新双亲指针的指向,有以下几种情况需要考虑:
subR 的左子树 subRL 可能存在,也可能为空。(当不为空时才更新 subR 左子树 subRL 的双亲指针指向)
旋转完成后,subR 的双亲节点,可能是空,也可能是 parent 原先的父节点。(所以更新 subR 的双亲指针前需要判断下)
代码如下:

总的来说,就是依次调整 subRL、parent、subR 的位置和双亲指针的指向。

// 左单旋
void treeRotateLeft(Node* parent)
{
    // subR:父亲的右孩子
    // subRL:父亲的右孩子的左孩子(大于父亲,小于subR)
    Node* subR = parent->_right;
    Node* subRL = subR->_left;

    // 1、让subRL成为父亲的右子树
    parent->_right = subRL;
    // 如果subRL不为空
    if (subRL)
    {
        subRL->_parent = parent; // 更新subRL双亲指针,指向parent
    }

    // 2、让parent成为subR的左子树
    subR->_left = parent;

    // 2.1、先记录下parent的双亲节点
    Node* ppNode = parent->_parent;

    // 2.2、更新parent双亲指针的指向
    parent->_parent = subR;

    // 2.3、判断parent是不是根节点
    // 是根节点
    if (parent == _root)
    {
        _root = subR;            // subR为新的根
        subR->_parent = nullptr; // subR双亲指针指向空
    }
    // 不是根节点,就是一个普通子树
    else
    {
        // 判断parent原先是左孩子还是右孩子
        if (ppNode->_left == parent)
        {
            ppNode->_left = subR; // parent原先的双亲节点接管subR,subR为这个子树的根
        }
        else
        {
            ppNode->_right = subR;
        }

        subR->_parent = ppNode; // 更新subR的双亲指针
    }

    // 根据树的结构,更新parent和subR的平衡因子
    parent->_bf = subR->_bf = 0;
}

③ 左右双旋 - 新节点插入较高左子树的右侧
将新的节点插入到了 parent 左孩子的右子树上,导致的不平衡的情况。
这时我们需要的是先对 parent 的右孩子进行一次左旋,再对 parent 进行一次右旋。

这里可以观察到一个现象: 节点60的左右子树被分走了,左子树最终成了30的右子树,右子树最终成了90的左子树。
在这里插入图片描述
将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再
考虑平衡因子的更新。

// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进
行调整
void _RotateLR(PNode pParent)
{
PNode pSubL = pParent->_pLeft;
PNode pSubLR = pSubL->_pRight;
 
  // 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节
点的平衡因子
int bf = pSubLR->_bf;
 
  // 先对30进行左单旋
_RotateL(pParent->_pLeft);
 
  // 再对90进行右单旋
_RotateR(pParent);
if(1 == bf)
pSubL->_bf = -1;
else if(-1 == bf)
pParent->_bf = 1;
}

*** 新节点插入较高右子树的左侧—右左:先右单旋再左单旋***
在这里插入图片描述
参考右左双旋。
总结:
假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑

  1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
    当pSubR的平衡因子为1时,执行左单旋
    当pSubR的平衡因子为-1时,执行右左双旋
  2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
    当pSubL的平衡因子为-1是,执行右单旋
    当pSubL的平衡因子为1时,执行左右双旋
    旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

2 AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树
    如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
  2. 验证其为平衡树
    每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
    节点的平衡因子是否计算正确
int _Height(PNode pRoot);
bool _IsBalanceTree(PNode pRoot)
{
// 空树也是AVL树
if (nullptr == pRoot) return true;
 
// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差
int leftHeight = _Height(pRoot->_pLeft);
int rightHeight = _Height(pRoot->_pRight);
int diff = rightHeight - leftHeight;
// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
// pRoot平衡因子的绝对值超过1,则一定不是AVL树
if (diff != pRoot->_bf || (diff > 1 || diff < -1))
return false;
// pRoot的左和右如果都是AVL树,则该树一定是AVL树
return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot-

>_pRight);
}

AVL树的验证
AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:
验证其是否为二叉搜索树
如果中序遍历可以得到一个有序的序列,就说明为二叉搜索树。

验证其是否为平衡树
每个节点子树高度差的绝对值不超过1

节点的平衡因子是否计算正确
(1)首先写一个计算当前树高度的函数

// 计算当前树的高度
int Height(Node* root)
{
    // 当前树为空,则高度为0
    if (root == nullptr)
        return 0;

    // 当前树不为空,计算左右子树的高度
    int leftHeight = Height(root->_left);
    int rightHeight = Height(root->_right);

    // 当前树的高度 = 左右子树中高度最大的那个加1
    return max(leftHeight, rightHeight) + 1;
}

(2)检查AVL树是否平衡,思路一:自顶向下的暴力解法

// 检查AVL树是否平衡,思路一
bool IsBalance1()
{
    return _IsBalance1(_root);
}
bool _IsBalance1(Node* root)
{
    // 当前树为空,说明是平衡的
    if (root == nullptr)
        return true;

    // 当前树不为空,计算左右子树的高度
    int leftHeight = Height(root->_left);
    int rightHeight = Height(root->_right);

    if (rightHeight - leftHeight != root->_bf) // 检查当前树的平衡因子是否计算正确
    {
        cout << "平衡因子异常:" << root->_kv.first << endl;
    }
    
    // 左右子树高度相减的绝对值小于2,说明当前树是平衡的,则继续往下判断其它子树
    return abs(leftHeight - rightHeight) < 2
        && _IsBalance1(root->_left)
        && _IsBalance1(root->_right);
}

(3)检查AVL树是否平衡,思路二:自底向上的高效解法(动态规划,前一个子问题的解,能够用于后一个问题求解)

// 检查AVL树是否平衡,思路二
bool IsBalance2()
{
    return _IsBalance2(_root) != -1;
}

int _IsBalance2(Node* root)
{
    // 先判断当前树的左、右子树是否平衡,再判断当前树是否平衡
    // 不平衡返回-1,平衡则返回当前树的高度

    // 当前树为空,返回高度0
    if (root == nullptr)
        return 0;

    // 当前树不为空,分别计算左右子树的高度
    int leftHeight = _IsBalance2(root->_left);
    int rightHeight = _IsBalance2(root->_right);
    
    if (rightHeight - leftHeight != root->_bf) // 检查当前树的平衡因子是否计算正确
    {
        cout << "平衡因子异常:" << root->_kv.first << endl;
    }
    
    // 左子树高度等于-1、右子树高度等于-1、左右子树高度差的绝对值大于1,说明当前树不平衡
    if (leftHeight == -1 || rightHeight == -1 || abs(leftHeight - rightHeight) > 1)
        return -1;

    // 运行到这里来了,说明当前树是平衡的,返回当前树的高度
    return max(leftHeight, rightHeight) + 1;
}

2.1 AVL树 - 删除节点(了解)

因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,如果出现不平衡树,进行旋转。只不过与二叉搜索树不同的是,AVL树删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。

2.2 AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,接近于完全二叉树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 O(log2N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1115633.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Qt第六十四章:QSplitter(分离部件)的使用

目录 一、效果图 二、qtDesigner 一、效果图 二、qtDesigner 相关Qss background-color: rgb(238, 242, 255); border:2px solid rgb(255, 255, 255); border-radius:15px

广覆盖丨看LPWAN界“六边形战士”如何炼成

物联网的快速发展对无线通信技术提出了更高的要求&#xff0c;专为低带宽、低功耗、远距离、大量连接的物联网应用而设计的LPWAN(low-power Wide-Area Network&#xff0c;低功耗广域网)也快速兴起。物联网应用需要考虑许多因素&#xff0c;例如节点成本&#xff0c;网络成本&a…

深入解析Java正则表达式:定义、原理和实例

1.前言 1.1简介 正则表达式在Java开发中扮演着重要的角色。本文将详细讲解Java正则表达式的定义、工作原理&#xff0c;并提供一些实例和示例代码&#xff0c;帮助读者更好地理解和应用正则表达式 1.2使用场景的介绍 正则表达式适用于许多问题和场景&#xff0c;包括但不限于…

Java日志系统之Log4j

目录 Log4J Log4j的简单使用 日志级别 Log4j的组件 Loggers Appenders Layout Layout格式 设置配置文件加载 配置文件解析 Log4J 是Apache下开源的日志框架 Log4j的简单使用 Testpublic void testLog4J(){Logger logger Logger.getLogger(Log4jTest.class);logger…

操作系统【OS】虚拟机

定义 使用虚拟化技术&#xff0c;将一台物理机器虚化为多台虚拟机器VM&#xff0c;每个虚拟机器都可用独立运行一个操作系统 分类 传统计算机 第一类VMM 第二类VMM

leetcode:2678. 老人的数目(python3解法)

难度&#xff1a;简单 给你一个下标从 0 开始的字符串 details 。details 中每个元素都是一位乘客的信息&#xff0c;信息用长度为 15 的字符串表示&#xff0c;表示方式如下&#xff1a; 前十个字符是乘客的手机号码。接下来的一个字符是乘客的性别。接下来两个字符是乘客的年…

【leetcode报错】 leetcode格式问题解决:error: stray ‘\302’ in program [solution.c]

leetcode格式问题解决 一、情景再现二、报错原因三、解决方法四、修正结果 一、情景再现 二、报错原因 该错误是指 源程序中有非法字符&#xff0c;需要将非法字符去掉。 一般是由于coder 1.使用中文输入法 或者 2.从别的地方直接复制粘贴代码 造成的。 代码中出现了 中文空格&…

Xshell+screen解决ssh连接 服务器掉线的问题

Linux screen命令解决SSH远程服务器训练代码断开连接后运行中断_linux screen ssh-CSDN博客 使用教程&#xff1a; 这里粗略介绍一下 &#xff08;1&#xff09;xshell xftp&#xff08;xshell点这个&#xff0c;有的话直接打开&#xff0c;没有的话就跳转下载&#xff09; …

RGBD Salient Object Detection via Disentangled Cross-Modal Fusion

方法 HHA means “horizontal disparity, height above ground, and angle with gravity”.结构化上下文编码器{E R S _R^S RS​,E D S _D^S DS​}&#xff0c;模态特定内容编码器{E R C _R^C RC​,E D C _D^C DC​} 体会 作者未提供代码

使用socket对http站点的访问

使用socket对http站点的访问 步骤&#xff1a; 1、实现TCP客户端 2、设置访问的网站地址 3、创建发送的请求报文 4、连接和发送报文到百度 5、显示百度回复的内容 import socket # 建立TCP连接 s socket.socket(socket.AF_INET, socket.SOCK_STREAM) # 与服务器建立连接 host …

API 排行榜,盘点用的最多的 API 协议!

每个人都用过 HTTP 协议。在网页端&#xff0c;在 App 端&#xff0c;大部分的数据交换都基于 HTTP 协议&#xff0c;但你也许会听过其他的一些协议。 从 《2023 全球 API 状况报告》 里的数据&#xff0c;我们能看到全球的开发者使用最多的 API 协议&#xff1a; 这些协议有什…

N-128基于springboot,vue酒店管理系统

开发工具&#xff1a;IDEA 服务器&#xff1a;Tomcat9.0&#xff0c; jdk1.8 项目构建&#xff1a;maven 数据库&#xff1a;mysql5.7 系统分前后台&#xff0c;项目采用前后端分离 前端技术&#xff1a;vueelementUI 服务端技术&#xff1a;springbootmybatis 本系统功…

Web前端开发——新年倒计实时刷新

Web前端开发——年倒计实时刷新 H5(HTML5)前端开发是指使用HTML5、CSS3和JavaScript等技术进行网页和移动应用的开发。HTML5是最新的HTML标准,提供了丰富的语义化标签和功能,使得网页可以更加优雅和多样化。CSS3是用于样式表的升级版本,提供了更多的样式效果和布局控制能…

【企业级SpringBoot单体项目模板 】—— 项目代码管理

&#x1f61c;作 者&#xff1a;是江迪呀✒️本文关键词&#xff1a;SpringBoot项目模版、企业级、模版、代码管理☀️每日 一言&#xff1a;生命力顽强的种子&#xff0c;从不对瘠土唱诅咒的歌。 文章目录 一、第一种&#xff1a;先创建仓库1.1 创建仓库1.2 clone…

驱动点灯

#include <linux/init.h> #include <linux/module.h> #include <linux/fs.h> #include <linux/uaccess.h> #include <linux/io.h> #include "head.h" unsigned int major; char kbuf[128] {}; // 定义三个指针指向映射后的虚拟内存 u…

【LeetCode】59. 螺旋矩阵 II

1 问题 给你一个正整数 n &#xff0c;生成一个包含 1 到 n2 所有元素&#xff0c;且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。 示例 1&#xff1a; 输入&#xff1a;n 3 输出&#xff1a;[[1,2,3],[8,9,4],[7,6,5]] 示例 2&#xff1a; 输入&#xff1a;n…

若依 ruoyi 新增每页分页条数

ruoyi-ui/src/components/Pagination/index.vue 下&#xff0c;找到pageSizes 数组中新增想要分页的数据量 &#xff1a;

Leetcode 202 快乐数(HashSet,环形链表思想)

Leetcode 202 快乐数&#xff08;HashSet&#xff09; 解法1 &#xff1a; 用HashSet来检测循环:star:为什么说数字n的位数由log n给定呢&#xff1f;解法2 &#xff1a; 链表的思想[出现循环表示链表出现环]&#xff0c;使用快慢指针法 题目链接>>>>>>>&…

Nginx介绍,nginx高级应用,nginx虚拟主机配置

HTTP介绍 在应用层 : HTTP&#xff0c;FTP&#xff0c;ssh&#xff0c;SMTP&#xff0c;POP3 网络层&#xff1a; TCP&#xff0c;UDP TCP:可靠的&#xff0c; UDP&#xff1a;不可靠的&#xff0c;直播&#xff0c;视频 qq 微信 HTTP协议是Hyper Text Transfer Protocol&#…

【多线程、单线程、异步编程】三个版本--在爬虫中的应用

并发编程在爬虫中的应用 之前的课程&#xff0c;我们已经为大家介绍了 Python 中的多线程、多进程和异步编程&#xff0c;通过这三种手段&#xff0c;我们可以实现并发或并行编程&#xff0c;这一方面可以加速代码的执行&#xff0c;另一方面也可以带来更好的用户体验。爬虫程…